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Abstract

Many multi-agent reinforcement learning (MARL) algorithms are
trained in fixed simulation environments, making them brittle when
deployed in real-world scenarios with more complex and uncer-
tain conditions. Contextual MARL (cMARL) addresses this by pa-
rameterizing environments with context variables and training a
context-agnostic policy that performs well across all environment
configurations. Existing cMARL methods attempt to use curriculum
learning to help train and evaluate context-agnostic policies, but
they often rely on unreliable proxy signals, such as value estimates
or generalized advantage estimates that are noisy and unstable in
multi-agent settings due to inter-agent dynamics and partial observ-
ability. To address these issues, we propose Contextual Multi-Agent
LLM-Guided Curriculum Learning with Diversity-Based Context
Blending (¢(MALC-D), a framework that uses Large Language Mod-
els (LLMs) to generate semantically meaningful curricula and pro-
vide a more robust evaluation signal. To prevent mode collapse
and encourage exploration, we introduce a novel diversity-based
context blending mechanism that creates new training scenarios
by combining features from prior contexts. Experiments in traf-
fic signal control domains demonstrate that cMALC-D improves
both generalization and sample efficiency compared to existing
curriculum learning baselines.
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1 Introduction

Multi-Agent Reinforcement Learning (MARL) has shown promising
results across diverse applications, including real-time strategy
games [15, 22], supply chain management [17, 19], navigation and
pathfinding [24, 35], and traffic signal control [3, 13, 23]. These
successes are largely attributed to the ability of MARL algorithms,
such as Independent Proximal Policy Optimization (IPPO) [4] and
Multi-Agent Proximal Policy Optimization (MAPPO) [32], to train
agents capable of coordination and cooperation.

Despite this progress, generalization remains a key challenge.
Most MARL algorithms are trained in simulation environments with
fixed or limited variability, making them brittle when deployed in
real-world scenarios where conditions are more complex and un-
certain. External factors such as noise [2, 10] and dynamic changes
[34] can degrade MARL performance substantially. These issues are
amplified in multi-agent settings due to the combinatorial explosion
of agent interactions, which can destabilize learned policies and
exacerbate overfitting to training conditions.

To address the challenge of poor generalization to unseen or out-
of-distribution environments, we build on the contextual MARL
(cMARL) framework [11], which explicitly represents environment
variability through a context variable c [9]. Generalization in cMARL
is commonly improved via curriculum learning [1], where agents
are trained on contexts that gradually increase in difficulty or nov-
elty [7, 12, 14, 20, 27]. This allows agents to incrementally acquire
transferable skills and improves robustness at test time.

While curriculum learning improves generalization in contextual
MARL by ordering training environments by difficulty or novelty,
existing approaches often depend on hand-crafted heuristics or
static curriculum schedules. These strategies may struggle to adapt
to the evolving agents or the complex dependencies among context
variables in dynamic environments. To address these limitations,
we explore the use of Large Language Models (LLMs) as high-level
curriculum designers. Recent advancements in LLMs, such as GPT-
40, Qwen, and Gemini, have shown strong capabilities in reasoning,
planning, and abstraction [6, 18, 25, 29, 31]. These models can oper-
ate in diverse domains through in-context learning, suggesting their
potential for adaptively generating and sequencing environment
contexts based on the agent’s current state and performance.

In this work, we propose Contextual Multi-Agent LLM-Guided
Curriculum Learning with Diversity-Based Context Blending (c(MALC-
D), a novel framework that integrates LLMs into contextual MARL
to dynamically generate training curricula. Specifically, in cMALC-
D, the LLM acts as a high-level controller that observes the agent’s
learning progress and adaptively proposes new environment con-
texts by reasoning over the space of context variables. To enhance
context coverage and prevent overfitting to narrow distributions,
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we introduce a diversity-based blending mechanism that mixes pre-
viously sampled contexts to construct novel yet meaningful train-
ing conditions. This LLM-guided process allows the curriculum to
evolve in tandem with agent capabilities, providing more targeted
and generalizable training experiences. We evaluate cMALC-D in
multiple traffic control scenarios, where environments are naturally
high-dimensional and dynamic. Results show that our approach im-
proves generalization to unseen environments with higher sample
efficiency compared to existing self-paced or handcrafted curricu-
lum strategies.
Our contributions are outlined as follows:

e We introduce Contextual Multi-Agent LLM-Guided Cur-
riculum Learning with Diversity-Based Context Blending
(cMALC-D), a framework that leverages Large Language
Models (LLMs) to generate semantically meaningful context-
based curricula for training MARL agents, improving gener-
alization to unseen environment configurations.
Experiments in multiple traffic-based environments demon-
strate that our approach achieves better generalization com-
pared to other self-paced curricula, with higher sample effi-
ciency.

2 Methodology

2.1 Problem Definition

We formulate cMALC-D as a contextual decentralized partially ob-
servable Markov decision process (cDec-POMDP). A cDec-POMDP is
parameterized by the tuple M = (N, S, A, ¢, R, Q, O, v, 11), where
N is the set of agent indices, denoting a system of n = || coop-
erative agents. S is the joint state space shared across all agents,
and A = [];e p A’ is the joint action space, where A’ is the action
space for agent i. The transition function 7¢ : SX A — A(S) deter-
mines the next state distribution given the current state and joint
action under context ¢, while the reward functionR: S X A —» R
maps state-action pairs to a scalar reward. Q = [];c 4 Q' denotes
the joint observation function, where Q! : S — O provides a
private observation to agent i, and O = [];c o O' is the joint obser-
vation space. The discount factor y € [0, 1) specifies the importance
of future rewards, and y : S — [0, 1] is the initial state distribution.

To model task variation, we define a distribution over contexts
¢ € C, where each context specifies a different context instance by
altering the transition functions. This induces a set Mg = {M,|c €
C} of decentralized POMDPs, each corresponding to a distinct
environment. Each M, encodes a different context instantiation
with a different transition function, and we assume that the reward
function and the state, action, and observation spaces remain fixed
across all contexts.

The objective of a policy x in a cDec-POMDP is to maximize
the expected return over the context distribution and over finite
horizon H:

|

where Il = {x = (z',...,2"%) | 7 : oi - ai} is the set of decen-
tralized policies, with each agent i € N selecting actions based only
on its local observation og. The goal is to learn a context-agnostic
policy that generalizes well across the set of Dec-POMDPs M.
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2.2 Related Works on Curriculum Learning

Curriculum learning [1] aims to improve generalization by struc-
turing agents’ learning process, progressing from easier to more
challenging tasks. While some methods employ manual curricula
designed by human experts, others explore automated curriculum
generation to eliminate the need for manual design. For example,
Sukhbaatar et al. [26] leverages self-play to minimize the number of
training episodes by generating progressively harder tasks through
agent interactions. Dendorfer et al. [5] and Florensa et al. [8] use
Generative Adversarial Networks (GANs) to create challenging
goals tailored to the agent’s capabilities. Portelas et al. [21] uses
a Gaussian Mixture Model (GMM) to model the task space and
align a student’s learning trajectory with a teacher-generated cur-
riculum. However, each of these requires an auxiliary model to
determine the learnability of a task. Instead, Eimer et al. [7], Klink
et al. [14], Parker-Holder et al. [20] employ self-paced learning,
which orders the curriculum based on agents’ performance. Thus,
each task is tailored to each agent’s abilities and ensures that the
learning progress is more self-contained.

2.3 LLM-based Self-Paced Curriculum

The two main limitations of current self-paced curriculum learn-
ing algorithms for contextual MARL are random task sampling
and unreliable proxy evaluations. Most existing approaches gen-
erate new contexts by randomly sampling from the context space,
without considering any meaningful progression between sampled
environments. This can lead to large variations between contexts
across training episodes, making learning unstable and inefficient.
Additionally, current methods typically rely on policy metrics like
the value estimate or the Generalized Advantage Estimate (GAE)
[12, 20] to evaluate agent performance and determine subsequent
contexts to train on. These can be unreliable during early training,
under sudden domain transfer, and noisy in multi-agent settings.
To address these limitations, we propose cMALC-D, a novel
curriculum learning strategy for contextual MARL that combines
structured reasoning capabilities of large language models (LLMs)
with an exploration mechanism based on task arithmetic. This
approach improves both the generation of semantically meaningful
environment contexts and the robustness of policy evaluation under
limited feedback. We present the full algorithm in Algorithm 1.
LLM-Guided Context Generation Instead of randomly sam-
pling from a context space C, we leverage an LLM to reason over a
sliding window of past training results and generate new contexts
that reflect a meaningful progression in difficulty or diversity. At
each curriculum step, the LLM receives a window of most recent
contexts {¢;—w, - - -, ¢;} and their associated performance metrics
from each agent {m;_yy, - - - m;} when trained on the MARL algo-
rithm A. It then leverages this history to propose a new context
that either incrementally challenges the current multi-agent policy
or targets known weaknesses observed in recent episodes.
Diversity-Based Context Blending To avoid curriculum stag-
nation and encourage exploration of the context space, we monitor
the similarity between successive contexts. If the LLM repeatedly
generates highly similar contexts, indicating potential mode col-
lapse in curriculum progression, we enable a diversity mechanism.
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Specifically, when the number of consecutive similar contexts ex-
ceeds a threshold, we blend the current LLM-proposed context with
a randomly sampled context from the history. This interpolation
helps inject novelty into the curriculum while avoiding sudden
changes in curricula. We measure similarity between contexts by
treating each context as a vector and measuring the normalized
cosine similarity between them.

Alternating Policy Training and Context Generation Simi-
lar to [18], we alternate between policy training and context gener-
ation. After each training phase, the agent’s performance on the
current context is recorded and passed to the LLM, which con-
ditions on a sliding window of past evaluations to generate the
next context. This approach, in-context context generation, enables
the LLM to implicitly reason about task difficulty and progression
without gradient updates or handcrafted reward shaping.

Algorithm 1 Contextual Multi-Agent LLM-Guided Curriculum
Learning with Diversity Based Context Blending (¢(MALC-D)

Require: MARL algorithm A, context space C, LLM M, blending
factor a, sliding window size w, similarity threshold 8§, max
similar count k, initial context c(

1: Initialize context buffer H « [], similarity counter s « 0
2: Set current context ¢g

3: for curriculum step t =0,1,...,T do

4:  Train 7; on ¢; via A, collect performance metric m;

5. Append (c;, m;) by algorithm A to context buffer H
6:  Construct window Hy, = {(¢t—, Ms—1y), ..., (cr,my)}
7. Query M with H,, to generate new context cﬁl

8:  Compute similarity o « Sim({c;—, -, ¢t }, C%l)
9: if 0 > § then

10: Increment similarity counter s « s+ 1

11:  else

12: Reset similarity counter s « 0

13:  if s > k then

14: Blend: ¢;4+1 < acy + (1 — (x)cﬁl, ¢y ~ Unif(H,,)
15: Reset similarity counter s « 0

16:  else

17: Set cpq41 — cﬁl

3 Experiments

In this section, we conduct experiments to answer two main ques-
tions: What is the generalization performance of the algorithm?
How does the diversity mechanism influence context generation?

3.1 Experimental Setup

We evaluate cMALC-D on three autonomous traffic signal con-
trol environments based on real-world data, where the context
parameters of the environment are defined in Table 1. We run
our experiments with the CityFlow environment [33] over 5 dif-
ferent random seeds. We train all policies with MAPPO [32], but
any MARL algorithm will work; we choose to use MAPPO due to
its efficiency compared to off-policy algorithms. The LLM used is
Qwen2.5-7B-Instruct with activation-aware weight quantization
[16] to reduce memory usage.
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Table 1: Context parameters used for curriculum learning
and their specified ranges.

Parameter Description Range
length Length of each car 1-10 m
width Width of each car 1-5m
maxPosAcc Max acceleration when speeding up 0.5-5 m/s?
maxNegAcc Max deceleration when braking 0.5-5 m/s?
usualPosAcc  Default acceleration when speeding up ~ 1-5 m/s?
usualNegAcc Default deceleration when braking 1-5 m/s?
minGap Minimum gap between cars 1-10 m
maxSpeed Maximum speed a car can travel 3-15m/s
headwayTime Time to reach the vehicle in front 1-5 s (int)

For all experiments, we alternate between expanding the cur-
riculum and training the MARL policy for 500 episodes, where
each episode is 360 timesteps, resulting in 180,000 trajectories per
training phase. We reserve a held-out test set of 5 contexts and
evaluate the current policy every 5 episodes using greedy action
sampling. After training, we generate 10 additional random con-
texts to assess generalization performance after a brief finetuning
phase of 5 episodes. In addition to the test reward (which is the
total time vehicles are moving), we report the throughput and the
average total time. We evaluate cMALC-D against 5 baselines: No
Curriculum (using the initial context), Domain Randomization [28],
PLR [12], ACCEL [20], and SPACE [7].

3.2 Generalization Performance

We show the generalization performance of cMALC-D against the
baseline algorithms in Table 2. Across all three environments, JN 1x
3,HZ, and JN 3 X 4, cMALC-D consistently outperforms or matches
all other curriculum strategies on the test reward and specific traffic
policy metrics, such as average delay and throughput. For example,
in JN 1 X 3, it achieves the highest test reward (29.01 + 0.35) and
throughput (3073.22 + 114.06) while reducing wait time by 2% over
the second-best algorithm. Similar trends hold for the HZ and JN
3 X 4 environments.

Structured curricula are necessary to learn generalizable
policies. In contrast, Domain Randomization underperforms com-
pared to cMALC-D, often giving 3rd or 4th place results across
performance metrics (e.g., 4th place in average delay in HZ with
241.79 +35.60 vs. cMALC-D’s 146.96 + 19.93). While it occasionally
yields high throughput or test rewards over other algorithms (e.g.,
2nd place test reward of 27.55 + 0.41 in JN 1 X 3), these gains are
unreliable and highly environment-dependent. This inconsistency
highlights a fundamental limitation of randomization-based strate-
gies: while they expose agents to a wide range of environments,
they do so without considering progression or context relevance.
As aresult, agents may struggle to learn the high-level coordination
skills necessary for generalization due to rapid context switching
in the curriculum.

Original context can be a useful prior, but may encour-
age overfitting. Training without a curriculum can yield strong
performance, particularly in the JN environments, where No Cur-
riculum frequently ranks second after cMALC-D (e.g., throughput
0f 3704.17 +147.39 vs. cMALC-D’s 3795.46 + 159.50 in JN 3 x 4). This
suggests that the original context provides a good prior, enabling
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agents to learn basic coordination strategies. However, its effective-
ness diminishes in more diverse settings (most notably in the HZ
environment, where its average delay of 339.09 + 53.28 is worse
than cMALC-D’s 146.96 + 19.93), where it performs significantly
worse than cMALC-D and exhibits high variance even in the JN
environments (e.g., test reward standard deviation of 2.44 vs. 1.53 in
JN 3 x 4). This drop shows that without curriculum learning, agents
overfit to the original context features, which limits generalizability.

LLM-based context evaluation provides a robust signal for
effective curriculum learning. While some methods like ACCEL,
PLR, and SPACE incorporate similar automatic curriculum schemes,
they rely heavily on policy evaluation signals, such as value func-
tions or generalized advantage estimates, to select and schedule
tasks. While these signals can be highly effective in single-agent
domains with millions of environment updates, they can be noisy
or unreliable in MARL due to non-stationarity, partial observability,
and inter-agent dependencies (e.g., SPACE’s inconsistent rankings
from 5th place in JN 1 X 3 to 1st place in HZ). On the other hand,
cMALC-D’s context selection strategy promotes gradual skill ac-
quisition that transfers well across diverse contexts. This is due to
using language-based evaluations that can capture qualitative im-
provements that traditional metrics might overlook (demonstrated
by cMALC-D’s top performance across all environments with test
rewards of 29.01 + 0.35, 172.87 + 1.03, and 116.57 = 1.53in JN 1 X 3,
HZ, and JN 3 X 4, respectively).

Table 2: Performance metrics across all environments. Best
results per metric are shown in bold and second-best results
are underlined. We include uncertainty within one standard
deviation of the mean, averaged over 5 seeds.

Curriculum Average Time Test Reward

JN1x3

Throughput

No Curriculum 816.00 + 35.63 3032.72 + 114.20 27.56 £ 0.46
Domain Randomization  865.64 + 43.08 2807.22 + 141.63 27.55 + 0.41
PLR 841.74 + 40.63 2955.79 + 127.53 27.61£0.44
ACCEL 860.81 + 39.57 2813.86 + 130.81 26.55 +0.45
SPACE 939.39 £39.96  2544.24 +133.01 26.89 +0.43
cMALC-D 809.39 + 36.37 3073.22 + 114.06 29.01 + 0.35
HZ 4x4
No Curriculum 710.01 + 42.78 2188.94 + 74.78 164.04 + 2.68
Domain Randomization  637.52 + 31.61 2318.41 + 53.49 168.53 + 1.44
PLR 611.26 + 26.48 2390.56 + 38.11 171.85 + 1.02
ACCEL 615.02 + 25.46 2393.30 + 35.37 171.07 + 1.17
SPACE 588.84 +25.11 2440.18 + 32.02  172.90 + 1.05
cMALC-D 586.86 + 25.50 2440.09 £ 35.45 172.87 + 1.03
JN3x4
No Curriculum 829.92 + 36.98 3704.17 + 147.39 115.77 + 2.44
Domain Randomization ~ 976.73 + 37.67 3108.67 + 151.36 112.38 + 1.52
PLR 992.79 + 47.30 3071.38 + 188.12 111.98 + 1.74
ACCEL 1077.27 £ 42.13  2699.78 + 166.09 110.28 + 1.60
SPACE 899.94 + 43.34 3447.63 £ 172.27 114.47 + 1.64
c¢MALC-D 815.81 +39.51 3795.46 + 159.50 116.57 + 1.53

3.3 Influence of the Diversity Mechanism

To evaluate the impact of the diversity mechanism, we compare
three variants of our method: the full version with similarity-based
diversity (¢tMALC-D), a baseline without the diversity mechanism
(cMALC), and a variant that applies task arithmetic with random
probability € = 0.1 instead of using similarity checks (¢(MALC-¢).
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Figure 1 shows the mean test reward across the three datasets,
each averaged over 5 seeds. On all three datasets, cMALC-D out-
performs the baseline cMALC and the random-diversity variant
cMALC-¢. On the simpler Jinan 1 X 3 dataset, cMALC-D achieves
clear gains, maintaining a reward of nearly 30.5, about two points
higher on average than the other variants. On the medium-complexity
Hangzhou dataset, cMALC-D exhibits faster convergence and im-
proved stability, while cMALC-¢ abruptly drops in performance af-
ter 170,000 timesteps. Finally, while performance is generally lower
on the JN 3 X 4 dataset, cMALC-D remains the top-performing
variant. Notably, cMALC test reward declines significantly, which
suggests mode collapse and poor generalization to test contexts,
further highlighting the need for context diversity during training.
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Figure 1: Mean Test Reward over the traffic datasets.

4 Conclusion and Future Work

In this paper, we develop cMALC-D, an LLM-based curriculum
learning algorithm for contextual MARL. Our method leverages the
reasoning capabilities of LLMs to generate semantically meaningful
curricula. We also introduce a novel diversity-based mechanism
based on task arithmetic from continual learning to encourage
exploration in the context space and avoid mode collapse. Our
experiments on three real-world traffic environments show that
c¢cMALC-D enhances MARL policy generalization and sample effi-
ciency over a variety of environment configurations. Future work
includes extending our formulation to handle noisy or malfunction-
ing environments [30], and exploring semantic feature relationships
to enhance self-paced curricula.
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