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Traic congestion in modern cities is exacerbated by the limitations of traditional ixed-time traic signal systems, which

fail to adapt to dynamic traic patterns. Adaptive Traic Signal Control (ATSC) algorithms have emerged as a solution by

dynamically adjusting signal timing based on real-time traic conditions. However, the main limitation of such methods is they

are not transferable to environments under real-world constraints, such as balancing eiciency, minimizing collisions, and

ensuring fairness across intersections. In this paper, we view the ATSC problem as a constrained multi-agent reinforcement

learning (MARL) problem and propose a novel algorithm named Multi-Agent Proximal Policy Optimization with Lagrange

Cost Estimator (MAPPO-LCE) to produce efective traic signal control policies. Our approach integrates the Lagrange

multipliers method to balance rewards and constraints, with a cost estimator for stable adjustment. We also introduce three

novel constraints on the traic network: GreenTime, GreenSkip, and PhaseSkip, which penalize traic policies that do

not conform to real-world scenarios. Our experimental results on three real-world datasets demonstrate that MAPPO-LCE

outperforms three baseline MARL algorithms by across all environments and traic constraints (improving on MAPPO by

12.60%, IPPO by 10.29%, and QTRAN by 13.10%). Our results show that constrained MARL is a valuable tool for traic planners

to deploy scalable and eicient ATSC methods in real-world traic networks.

CCS Concepts: · Computing methodologies→Multi-agent planning; Multi-agent reinforcement learning; Partially-

observable Markov decision processes; ·Mathematics of computing→ Nonconvex optimization.

Additional Key Words and Phrases: Multi-Agent, Traic Signal Control, Reinforcement Learning, Constrained Optimization,

Lagrange Multipliers

1 Introduction

Traditional traic signal systems, which operate on pre-programmed, ixed schedules, are often inadequate in

addressing the dynamic nature of urban traic low due to an inability to adapt to constantly changing traic

patterns. This can result in longer waiting times and unfair traic distributions across intersections [11]. To

combat the limitations of traditional ixed-time traic signal systems, Adaptive Traic Signal Control (ATSC)

methods have been developed to adjust signal timing based on real-time traic conditions dynamically. However,

while ATSC methods hold promise in reducing congestion in busy intersections, there are still uncertainties

about their deployment in real-world environments. One challenge is balancing eiciency while minimizing

vehicle collisions and other hazards [15]. Another challenge is maximizing the fairness of each intersection, or

ensuring that the green times (amount of time the current traic light is green) for diferent lanes are the same

on average [32]. In general, these challenges highlight the ongoing struggles with incorporating constraints into

ATSC methods that accurately relect the demands of real-world environments.
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Previous works on ATSC use the observations of the intersections to form traic control policies, such

as SOTL [10]. However, these are heuristic-based and cannot adapt to more complex traic environments.

Additionally, they do not consider how current actions can afect future states, which hinders long-term outcomes.

Reinforcement Learning (RL) has also been used to develop autonomous traic control methods by optimizing

over current and future states [46]. This includes actor-critic methods [4] and policy gradient methods [27, 30] on

single intersections [29] and multi-intersection environments [8, 42]. RL has also been used for non-traditional

intersections such as roundabouts [34] and dynamical lane changing systems [48].

Due to the exponentially growing action space of reinforcement learning as the number of intersections

increases, it becomes diicult to learn efective single-agent RL policies that can adapt to non-stationary en-

vironments like traic signal control. As such, some works formulate ATSC as a decentralized Multi-Agent

Reinforcement Learning (MARL) problem, using several agents to represent each intersection instead of one

agent as a global traic controller. This allows each intersection to act as its own local RL agent under partial

observability and maximize its utility along with the global utility [38, 39, 48]. Additional work serves to improve

baseline MARL algorithms by improving sample eiciency [20], or adding information to the state space to

mitigate partial observability, such as communication methods [22] and environment modeling [5, 41].

Due to the eicacy of MARL in solving high-dimensional traic control problems and current struggles with

incorporating constraints that relect real-world environments, we propose a constrained MARL algorithm

named Multi-Agent Proximal Policy Optimization with Lagrange Cost Estimator (MAPPO-LCE). Speciically, the

algorithm uses the Lagrange multipliers method to balance the constraints with maximizing rewards. MAPPO-

LCE builds on existing constrained MARL algorithms such as MAPPO-Lagrange by introducing a cost estimator

to alleviate the unstable policy updates when using the advantage function to update the Lagrange parameter.

Our contributions can be summarized as follows:

(1) We deine three novel constraint functions: GreenSkip, GreenTime, and PhaseSkip, which penalize policies

that do not relect real-world scenarios.

(2) We propose a constrained MARL algorithm for multi-intersection traic control and introduce a Lagrange

Cost Estimator to alleviate potentially unstable constraint updates when using the advantage function.

(3) We show experimentally that MAPPO-LCE outperforms three baseline MARL algorithms on three diferent

datasets.

(4) Our results show that constrained MARL can be a valuable tool for traic planners to deploy ATSC methods

in real-world traic networks to reduce congestion.

2 Related Work

In this section, we discuss recent work on MARL algorithms and general constraints for ATSC.

2.1 MARL for ATSC

Recent work uses multi-agent reinforcement learning to model traic signal control, with each agent controlling

one intersection under partial observability. Wang et al. [39] developed independent and joint Advantage Actor-

Critic (A2C) algorithms for ATSC with a centralized critic in a distributed setting. Chen et al. [9] also leverages

A2C in a multi-agent setting, using decentralized critics for each agent in a distributed network. In addition to

on-policy algorithms, previous works use multi-agent of-policy algorithms for ATSC. For example, Zhang et al.

[45] uses Nash Q-Learning to alleviate the large state-action space from traditional MARL algorithms. Wang

and Wang [38] improves on this by using a Deep Q-Network [26] with Friend Q-Learning [23] to achieve better

coordination between agents.

Other ways to improve MARL algorithms in ATSC are to include additional information in each agent’s

observation space to create more informed policies. However, including more information does not always lead
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to better results, as this can require more parameters and a slower convergence rate [47]. Thus, selecting the right

information to include between agents is crucial for performance. Huang et al. [20] use a model-based approach

by learning a global probabilistic dynamics model along with the policy, which generates a prediction of the

next states as additional information. This method is purely decentralized, where there is no interaction between

agents. Thus, Jiang et al. [22] develops UniComm, a method that computes only the necessary information

between neighbor agents, which is used in their UniLight algorithm to calculate Q values for each agent.

2.2 Constraints for ATSC

Solving environments with incorporated constraints is diicult due to balancing rewards and costs from the

constraints. Constrained Reinforcement Learning (CRL) is an active research area in RL that solves such environ-

ments by developing algorithms that exclusively learn policies that are both efective and satisfy the constraints

(e.g. safety, fairness, etc.) [2, 17, 24]. Achiam et al. [2] develops a Constrained Policy Optimization (CPO) algorithm

to learn policies under constraints, and Gu et al. [17] expands this into a multi-agent setting with MACPO and

MAPPO-Lagrange. Tabas et al. [37] improve upon MACPO by developing a primal-dual optimization framework

and parameterizing each agent with a neural network.

In ATSC, there is minimal work on incorporating constraints into the environment to develop policies closer

to real-world scenarios. Gu et al. [16] partitions the traic network topology to alleviate scalability issues with

MARL, but this only constrains the state space, not the action space. Haydari et al. [18] use the CRL framework

with the amount of emissions as the constraint and develop a Soft Actor-Critic algorithm to balance rewards with

constraints. However, this is a single-agent setting, which poses scalability issues as the number of intersections

increases. Adan et al. [3] models traic environment constraints in a multi-agent setting, but this work models

agents as the vehicles around one intersection, instead of each intersection being an agent. Finally, Raeis and

Leon-Garcia [32] creates two fairness constraints for the ATSC problem, one delay-based metric which is meant

to diminish the number of vehicles experiencing signiicantly longer waiting times and another throughput-

based metric which attempts to give equal weighting to all traic lows by extending concepts from computer

networking. However, this is also a single agent setting in a more simplistic environment and is focused more

speciically on fairness between the North-South and East-West traic lows instead of constraints under general

traic network topologies.

3 Preliminaries

In this section, we deine the Constrained Markov Game, the RL environment, and our constraints for ATSC.

3.1 Constrained Markov Game for ATSC

We can model ATSC as a constrained Markov Game [40] which can be represented by the tuple� = ⟨N , � ,

{�� }�∈N, {�� }�∈N,T , � ,Ω,�, �,�⟩, where N = {1, 2, ..., �} is a set of � agents; � is the state space; � = ×�∈N�� is

the joint observation space, where �� is the observation space of agent �; � = ×�∈N�� is the joint action space,

where �� is the action space of agent �; � : � ×� × � → [0, 1] is probabilistic state transition function; � is the

reward function; Ω : � ×� ×� → [0, 1] is space of conditional observation probabilities (Ω(�′, �, �) = � (� |�′, �));

� : � ×�→ R is the cost function; and � is the cost limit. Since this is a decentralized Markov Game, the reward

function for each agent is the same, e.g. � = �� ∀� ∈ N . MARL algorithms for constrained Markov Games aim to
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Fig. 1. 8 actions corresponding to the 8 phases for each intersection of trafic lights. Each phase corresponds to two trafic

lights being on at the same time (e.g. the second box indicates vehicles are allowed to continue heading east or turn let to

head north).

search for policy � that solves this constrained optimization problem:

max
�

E(��∼�,��∼� )

[

∞︁

�=0

��� (�� , �� )

]

,

s.t. E(��∼�,��∼� )

[

∞︁

�=0

��� (�� , �� )

]

≤ �

In the ATSC problem speciically, the elements of the environment are deined as:

• Agents: Each agent is responsible for controlling traic lights at one intersection.

• Observation: The observation of each agent is composed of the characteristics of the corresponding

intersection. Speciically, each intersection has 12 road links (vehicles turning left, right, and going straight

in each cardinal direction), and each road link contains the number of vehicles moving, the number of

vehicles waiting, the traic light phase, and the number of vehicles in each lane, as well as the speed and

location of each vehicle in the lane.

• Actions: As shown in Figure 1, there are eight phases that describe combinations of traic lights that can

be green simultaneously. At each timestep, the intersection can choose one of these phases as an action.

• STATE: The state is the combination of all observations at the current time step.

• STATE Transition: After an action is selected at each time step, vehicles are allowed to move if the

corresponding traic light is green for a short period�� . While the environment does not directly represent

yellow lights, before changing phases, all lights that would be turned on/of are turned to red for a brief

period �� before the lights of the new phase are turned to green.

• Reward: Each agent will receive a global reward �� �� + ���� , where �� is the total number of vehicles

moving, �� is the total number of vehicles waiting, and �� and �� are hyperparameters.

For more information on environment parameters, refer to Appendix A.

3.2 Environment Constraints

We develop three novel environment constraints on each intersection that relect real-world environments named

GreenTime, PhaseSkip, and GreenSkip. These constraints also help to promote fair treatment of all vehicles by the

agents by reducing diferences in waiting times between directions and encouraging agents to take all possible

actions.

• GreenTime: Each light � should be green for no more than ���� ���� before turning red to prevent long

waiting times from other lanes, and model light cycles in the real world. Each time step that a light is on

increases its GreenTime value by 1, and when it is turned of its GreenTime value is constant at 0. This

ensures that no speciic lane is green for an unrealistically large amount of time. Right-turn lights are
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ignored for this constraint, as they are always treated as being on.

����� (�) ≤ ���� ���� (1)

• PhaseSkip: The state of each traic light follows one of a speciic, pre-determined set of phases (see Figure

1). No phase should be skipped consecutively more than ���� ���� times. Each time the phase changes, the

new phase has its PhaseSkip value set to 0, and all phases other than the new phase and the old phase have

their PhaseSkip values incremented by 1. This is a way of somewhat closely approximating how traic

cycles work in the real world, by rotating roughly evenly between possible phases, as well as being an

indirect way of promoting the agent to give equal attention to all lanes.

������ (�) ≤ ���� ����� (2)

• GreenSkip: Similar to the phase constraint, no individual light � should be skipped consecutively more than

���� ����� times. Each time the phase changes, each light turned on in the new phase has its GreenSkip value

set to 0, and all lights not on in the new phase or the old phase have their GreenSkip values incremented

by 1. This is a direct way of promoting fairness by reducing the variance in waiting times among all lanes,

as this ensures that if the phase is continuously changing, each lane will receive some amount of attention

within the phase cycle. Right-turn lights are also ignored for this constraint.

������ (�) ≤ ���� ����� (3)

Each agent is constrained according to Eqns 1-3. The penalty associated with each constraint is the average

across all lights:
∑

�∈N

∑

�
1�

�� (� )

|N |
(4)

where 1� is an indicator function that checks whether the constraint is satisied, � is the intersection, |N | is the

number of agents, � is a speciic light at the intersection the agent controls, and �� (�) is the total number of lights

at the intersection that particular agent controls. Note that for the PhaseSkip constraint, we sum over the phases

and divide by the total number of phases. For our experiments, the number of lights is always 12 and the number

of phases is always equal to 8, as all the intersections in our environment have 4 roads of 3 lanes with 8 distinct

phases. The exact algorithms for calculating each constraint can be referenced in Algorithms 1, 2, and 3, and

examples for each constraint can be seen in Figures 2, 3, 4.

3.3 Comparison to Alternate Fairness Definitions

Our fairness constraints ofer two key advantages over alternative deinitions commonly used in multi-agent

reinforcement learning (MARL): they are more interpretable and can be naturally integrated into the constrained

MARL framework, which is signiicantly easier to optimize. Twowidely used approaches for incorporating fairness

into reinforcement learning are Generalized Gini Functions (GGFs) [35] and the Coeicient of Variation [21].

GGFs work by deining a sorted �-dimensional vector of agent utilities � and a corresponding sorted weight

vector� , then computing their dot product. This presents two challenges in comparison to our approach. First,

managing how the sorted objective vector � evolves as policies are updated becomes increasingly complex as

the number of agents grows. Second, GGFs lack the intuitive interpretability of our constraints. For instance,

when using GreenTime as a constraint in traic networks, traic planners can directly observe the duration of

green lights and how constraint violations decrease over time (see Section 6.2), making the fairness behavior

more transparent.

The Coeicient of Variation, another alternative, measures the variation of agents’ utilities around their mean.

While this is an interpretable metric, it is diicult to optimize because it is embedded directly into the reward
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Fig. 2. The figure above shows an example of the GreenTime constraint, with time shown as t=, and the array being the

constraint value for each light in the example intersection. As explained above, each lights GreenTime value is simply the

time it has been on in a row, with larger values being penalized.

function and thus requires coordination through a joint policy across all agents. In contrast, our method decouples

constraint dynamics from the primary objective by introducing a separate MDP to manage constraint learning.

This separation avoids the scalability and optimization issues that joint reward-based fairness formulations have.

Algorithm 1 GreenTime Calculation

1: for time = 1 to � do

2: for light in lights do

3: if light is ON in the current phase then

4: green_time[light]← green_time[light] + 1

5: else

6: green_time[light]← 0

7: end if

8: end for

9: end for

Algorithm 2 PhaseSkip Calculation

1: for time = 1 to � do

2: if new_phase ≠ old_phase then

3: for phase in phases do

4: if (phase ≠ old_phase) and (phase ≠ new_phase) then

5: phase_skips[phase]← phase_skips[phase] + 1

6: end if

7: end for

8: phase_skips[new_phase]← 0

9: end if

10: end for
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Fig. 3. The figure above shows an example of the PhaseSkip constraint, with time shown as t=, and the array being the

constraint value for each phase in the example intersection. As explained above, each phase’s PhaseSkip value is simply the

number of times it has been passed over in phase changes without being selected or being the previous phase, with larger

values being penalized.

Algorithm 3 GreenSkip Calculation

1: for time = 1 to � do

2: if new_phase ≠ old_phase then

3: for light in lights do

4: if (light is RED in old_phase) and (RED in new_phase) then

5: green_skips[light]← green_skips[light] + 1

6: else

7: green_skips[light]← 0

8: end if

9: end for

10: end if

11: end for

ACM J. Auton. Transport. Syst.
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Fig. 4. The figure above shows an example of the GreenSkip constraint at time t, and the array being the constraint value for

each light in the example intersection. As explained above, each light’s GreenSkip value is simply the number of times it

has been passed over in phase changes without being selected or being on in the previous phase, with larger values being

penalized.

4 Method

In this section, we describe our constrained multi-agent reinforcement learning algorithm: Multi-Agent Proximal

Policy Optimization with Lagrange Cost Estimator (MAPPO-LCE).

4.1 Multi-Agent Proximal Policy Optimization with Lagrange Cost Estimator

Constrained optimization problems are typically of the form

max
�

� (�)

s.t. �(�) ≤ �

which can be solved by the Lagrange multiplier method

L(� ; �) = � (�) − �(�(�) − �) (5)

where L(� ; �) is a new optimization objective to maximize and � > 0 is the Lagrange multiplier. [6]. Thus, for

the constrained MARL problem,

max
��

E(��∼�,��∼�� )

[

∞︁

�=0

��� (�� , �� )

]

, (6)

s.t. E(��∼�,��∼�� )

[

∞︁

�=0

��� (�� , �� )

]

< � (7)
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we can formulate it with a Lagrangian where

� (�) = E(��∼�,��∼� )

[

∞︁

�=0

��� (�� , �� )

]

(8)

�(�) = E(��∼�,��∼� )

[

∞︁

�=0

��� (�� , �� )

]

(9)

In MAPPO-LCE, we use a reward critic and a cost critic, � �
��

and � �
��

, for estimating the discounted cumulative

reward and discounted cumulative cost, respectively. We choose to build of of MAPPO because we require

only one actor and one critic model during training and inference, which reduces the computation and memory

requirements of the algorithm. Instead of training on every step, we also collect a dataset � containing rollout

data every episode: {�� , �� , �� , ��+1}. After � episodes, we update the policy. Similar to MAPPO-Lagrange [17], we

aim to minimize the following loss:

L(�� ) = L� (�� ) − �L� (�� ) (10)

where L� and L� are the MAPPO [43] actor losses with an unclipped critic loss term:

L� (�� ) =E��∼�,��∼��

[

min
(

���
�
� , clip(�� , 1 ± �)�

�
�

)

]

+ �E��∼�

[

1

2
∥� �

��
(�� ) − �� ∥

2

]

(11)

L� (�� ) =E��∼�,��∼��

[

min
(

���
�
� , clip(�� , 1 ± �)�

�
�

)

]

+ �E��∼�

[

1

2
∥� �

��
(�� ) − �� ∥

2

]

(12)

In these formulations, �� is the importance sampling ratio

�� =
�� (�� |�� )

��old (�� |�� )

��
� and �

�
� are the cost advantage and reward advantage functions respectively, and � is the clipping parameter.

Here, we abuse notation and say that ��
� = ��

� (�� , �� ) and �
�
� = ��

� (�� , �� ). We also update the reward critic model

� �
��

and the cost critic model � �
��

by their respective temporal diference error (TDE):

L��
= E(�� , ��+1 )∼�

[

�� + ��
�
��
(��+1) −�

�
��
(�� )

]

(13)

L��
= E(�� , ��+1 )∼�

[

�� + ��
�
��
(��+1) −�

�
��
(�� )

]

(14)

In MAPPO-Lagrange [17], the Lagrange multiplier � is updated by the mean of the cost advantage function

��
� . This works in theory because the cost advantage function measures how much constraint violation occurs

in a certain state when taking a particular action, compared to the mean constraint violation over all actions.

Thus, if taking an action in a state results in a negative cost advantage, � should be increased to alleviate this.

However, since the advantage function only converges during the policy learning process, it may take many

iterations to accurately estimate the constraint violation. During this time, the estimates can be unstable and

potentially incorrect. To address this issue, we incorporate a Lagrange Cost Estimator to provide more stable and

reliable estimates of constraint violations. This cost estimator quickly learns the cost dynamics within the irst
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few iterations to accurately predict the cost, and then updates �. We train the cost estimator �� by minimizing

the following loss:

L�� = ∥�� (�� , �� ) − �� ∥
2, �� ∼ �, �� ∼ �� (15)

Finally, we update � with the following loss to ensure that the constraint function is satisied under the cost limit

� :

L� = E��∼�,��∼�� [−�(�� (�� , �� ) − �)] (16)

as the loss is minimized when the estimated cost is much less than the cost limit. One consideration is that instead

of updating the policy in a fully online manner, we perform rollouts of the MARL policy for one episode and

store the trajectories (containing the state, action, reward, cost, and next state) in a replay bufer. Then during

training, we randomly sample from this replay bufer. The main advantage is that each agent learns from a more

diverse set of environment updates and reduces the variance of gradient updates. Additionally, we clamp � to be

greater than zero to ensure that the policy is always penalized when the constraints are violated. Finally, to allow

for smoother transitions between updates in the actor model and the critic models, we perform soft updates

using the frozen versions of the models used in the Temporal Diference Error calculations. We display the full

algorithm in Algorithm 4.

Algorithm 4MAPPO-LCE Algorithm

Initialize replay buferD, policy parameters � , critic networks� �
�
,� �

�
, cost network �� , and Lagrange multiplier

�.

for each episode do

for each time step � do

Select action �� = �� (�� )

Execute joint action �� at state ��
Observe reward �� , cost �� , and next state ��+1
D ← D ∪ (�� , �� , �� , �� , ��+1)

end for

Sample batch B from D

� ← � − �∇L(�� ) by Equation 10

�� ← �� − �∇L��
by Equation 13

�� ← �� − �∇L��
by Equation 14

�� ← �� − ���∇L�� by Equation 15

� ← � − ��∇�L� by Equation 16

Clamp to ensure � ≥ 0

Soft update actor and critic parameters:

� ← �� + (1 − �)� ′, �� ← ��� + (1 − �)�
′
� , �� ← ��� + (1 − �)�

′
�

end for

5 Experiments

In this section, we outline our experimental details, including the environment conigurations and explanation of

baseline algorithms.

ACM J. Auton. Transport. Syst.
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5.1 Environment Setup

We run our experiments on MAPPO-LCE and related baselines on the CityFlow environment [44], which is

a scalable and realistic traic simulator due to its C++ backend. Additionally, it is compatible with several

multi-agent RL algorithms by integrating with the Gymnasium library [7]. From Wei et al. [42], there are three

publicly available datasets collected from real-world traic data from Hangzhou, China (HZ); Jinan, China (JN);

and New York, USA (NY). Details of each environment are located in Table 1.

Each environment is deined by a ixed network ile, which outlines the topology of the traic network and

positions the traic signals and roads as coordinates in space. There is a also a set traic low ile, which deines

the route each vehicle will take. The diiculty with each environment is that the vehicles will randomly enter the

simulation, with varying distributions on where and when vehicles will appear. As such, a successful policy must

be able to adapt to a wide range of traic low distributions.

To evaluate the performance of each of the MARL algorithms, we use three evaluation metrics:

• Test Reward: The test reward is the same as the training reward: �� �� + ���� .

• Average Delay: The average delay is the average delay across all vehicles, which is the total travel time

minus the expected travel time for each vehicle. The expected travel time is the estimated time the vehicle

should inish its route if there were no traic lights.

• Throughput: The throughput of the environment is the number of vehicles that complete their routes

before the episode ends.

HZ JN NY

Number of Intersections 16 12 48

Number of Lanes 3 3 3

Total Number of Vehicles 2983 6295 2824

Time Steps (s) 3600 3600 3600

Table 1. Summary of Trafic Metrics for HZ, JN, and NY.

5.2 Baseline Methods

In this work, we compare our algorithm to three baseline MARL algorithms: Independent Proximal Policy

Optimization (IPPO) [13], Multi-Agent Proximal Policy Optimization (MAPPO) [43], and QTRAN [36]. This set of

algorithms allows us to test both on-policy algorithms (IPPO, MAPPO), and of-policy algorithms (QTRAN).

• IPPO [13]: IPPO treats each agent as its independent local RL agent to maximize local rewards. This

transforms the problem into |N | independent single-agent PPO rollouts.

• MAPPO [43]: MAPPO joins the actions of each agent into a single joint action vector, and each agent shares

an actor network and a critic network to update the policy.

• QTRAN [36]: QTRAN develops an unstructured value function factorization, which allows for more

generalizable decentralized execution of MARL problems.

All baseline algorithms were implemented or derived from the ePYMARL library [31]. For each algorithm, the total

reward at time step � is �� −��� , where �� and �� are the rewards and costs at time step � , and � is a hyperparameter

that trades of maximizing the reward and satisfying the constraints. All experiments were conducted on a single

RTX A5000 GPU.
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6 Results

In this section, we show the results of our algorithm on several environment conigurations and perform ablation

studies to highlight the advantages of speciic components of MAPPO-LCE.

6.1 Main Results

Fig. 5. Plot of train reward on the over 500,000 timesteps for the MAPPO-LCE algorithm compared to baseline algorithms

across all environments and constraints. Plots are best viewed in color.

The results of the algorithms on the three environments are shown in Figure 10 and Table 2. In these igures,

we include the results of each algorithm on the test reward function deined in Section 5.1.

As shown in Table 2, MAPPO-LCE outperforms all three comparison algorithms in every combination of

environment and constraint that was tested on. While some of the other algorithms come close to the performance

of MAPPO-LCE on speciic setups (e.g. IPPO on HZ GreenSkip or QTRAN on NY PhaseSkip), taking the average

across all runs yields a 12.60% improvement over MAPPO, a 10.29% improvement over IPPO, and a 13.10%

improvement over QTRAN. Additionally, taking the average over the diferent constraints, MAPPO-LCE sees a

13.05% improvement with GreenTime, a 12.08% improvement with PhaseSkip, and a 10.87% improvement with

GreenSkip. The slight decay in improvement with PhaseSkip or GreenSkip is likely due to them over-constraining

the action space and too strongly encouraging the model to switch into unoptimal phases too often, but even

with those restrictions, the model still sees consistent improvements.

To demonstrate the improved sample eiciency of MAPPO-LCE compared to existing MARL algorithms, we

show the reward on the training environment over time in Figure 5. MAPPO-LCE demonstrates better sample
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Fig. 6. Plot of train Green Time constraint values over all environments and algorithms. Plots are best viewed in color.

Fig. 7. Plot of train Green Skip constraint values over all environments and algorithms. Plots are best viewed in color.

Fig. 8. Plot of train Phase Skip constraint values over all environments and algorithms. Plots are best viewed in color.

eiciency in all environment and constraint combinations. Although in some environments MAPPO and IPPO

obtain higher rewards, this is at the cost of higher constraint violation rates, as shown in Figures 6, 7, and 8.

Interestingly, we note the opposite conclusion for QTRAN, which has a signiicant decrease in reward over

training but also decreased constraint violation rates. Unlike MAPPO and IPPO, QTRAN emphasizes reducing the

ACM J. Auton. Transport. Syst.
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Fig. 9. Plot of train reward on the over 500,000 timesteps for the MAPPO-LCE algorithm compared to MAPPO-Lagrange

across all environments and constraints. Plots are best viewed in color.

Environment Constraint MAPPO-LCE % Reward increase over comparison algorithms

MAPPO IPPO QTRAN

HZ GreenTime 13.86% 12.15% 10.61%

HZ PhaseSkip 12.88% 10.99% 8.74%

HZ GreenSkip 11.27% 2.55% 21.58%

JN GreenTime 14.22% 7.65% 21.74%

JN PhaseSkip 18.57% 15.03% 17.95%

JN GreenSkip 10.69% 7.73% 7.39%

NY GreenTime 10.4% 14.15% 12.62%

NY PhaseSkip 9.46% 9.52% 5.55%

NY GreenSkip 12.05% 12.83% 11.75%

Table 2. Comparison of the Test Reward metric between MAPPO-LCE and MARL baseline algorithms across all constraint

and environment combinations.

constraint values, but to a point that decreases the utility of the algorithm. These results show that MAPPO-LCE

is able to accurately manage balancing constraints and generating an efective MARL policy.
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Environment Constraint MAPPO-LCE % Throughput increase over comparison algorithms

MAPPO IPPO QTRAN

HZ GreenTime 11.4% -5.93% -0.59%

HZ PhaseSkip 10.66% -5.44% 1.81%

HZ GreenSkip 11.88% -13.73% 34.89%

JN GreenTime 23.9% 10.45% 57.99%

JN PhaseSkip 29.77% 11.3% 29.86%

JN GreenSkip 15.42% 0.46% 11.85%

NY GreenTime 40.25% 7.43% 50.88%

NY PhaseSkip 78.22% 18.86% 44.02%

NY GreenSkip 74.15% 15.6% 63.91%

Table 3. Comparison of the Test Throughput metric betweenMAPPO-LCE andMARL baseline algorithms across all constraint

and environment combinations. Here, a higher metric indicates a beter policy.

Environment Constraint MAPPO-LCE % Average Delay decrease

MAPPO IPPO QTRAN

HZ GreenTime 24.23% 8.56% 20.44%

HZ PhaseSkip 13.73% -2.97% 13.31%

HZ GreenSkip 10.83% -17.89% 24.72%

JN GreenTime 15.64% 8.19% 24.44%

JN PhaseSkip 19.27% 10.52% 19.78%

JN GreenSkip 10.6% 2.11% 8.51%

NY GreenTime 8.36% 3.94% 10.47%

NY PhaseSkip 13.41% 6.71% 11.52%

NY GreenSkip 11.65% 4.79% 11.94%

Table 4. Comparison of the Test Average Delay metric between MAPPO-LCE and MARL baseline algorithms across all

constraint and environment combinations. Note that a higher metric here is beter due to an average delay decrease.

One additional notable result from Figure 10 is that our algorithmmore consistently outperforms the comparison

algorithms as the complexity of the environment increases (we consider the NY environment the most complex, as

it contains 3-4 times more agents than the HZ and JN environments). This is because in harder environments with

more agents, policies are more heavily penalized for violating constraints. MAPPO-LCE’s ability to adaptively

handle constraints through a learnable Lagrange multipliers parameter enables it to more efectively balance

performance while adhering to constraints across all agents. This underscores the scalability of MAPPO-LCE,

which is essential for incorporating MARL policies in real-world settings.

A further analysis of the results can be done by looking at Tables 3 and 4, which show other important metrics

for traic systems (Figures 11 and 12). MAPPO-LCE is sometimes outperformed in either or both of these metrics

by other algorithms - however, this only occurs in the HZ environment, which is the simplest. MAPPO-LCE still

outperforms all three comparison algorithms in general, however, it has much smaller margins of improvement

over IPPO. In terms of Throughput, it achieves a 32.85% improvement over MAPPO, a 32.73% improvement over

QTRAN, but only a 4.33% improvement over IPPO. In terms of Average Delay, it achieves a 14.19% improvement
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over MAPPO, a 16.13% improvement over QTRAN, but only a 2.66% improvement over IPPO. This is likely because

the traic environment is largely independent, as while nearby traic lights exhibit some dependencies due to

their close proximity, the inluence of distant traic lights is minimal and delayed. Thus, an independent policy

algorithm like IPPO can efectively capture localized decision-making dynamics while avoiding unnecessary

coordination. Additionally, De Witt et al. [13] shows that IPPO’s performance on fully cooperative tasks can

exceed other on-policy algorithms like MAPPO and Q-function factorization methods such as QMIX [33] and

QTRAN due to the importance of policy value clipping. However, IPPO still lags behind MAPPO-LCE due to the

Lagrange Cost Estimator’s ability to guide the policy in the implicitly constrained state and action space.

We also show the averaged individual test constraint values for each of the algorithms in Figures 13, 14,

and 15, where each constraint value of a particular constraint ranges from 0-1 representing the proportion of

lights/phases in violation of the constraint, with 0 being no violations and 1 being all possible violations. In almost

all test environment and constraint combinations, the value of the constraint violation is lowest for MAPPO-

LCE compared to the other baseline algorithms. Additionally, QTRAN and MAPPO’s performance decrease is

supported by the high constraint violations, especially for GreenSkip and PhaseSkip, as the number of constraint

violations increases signiicantly during training. However, while IPPO has much better performance in each

environment than QTRAN and MAPPO (but not as much as MAPPO-LCE), it still has large constraint violations,

especially concerning the GreenSkip constraint. Finally, we note that MAPPO-LCE’s improved performance

on the harder JN and NY datasets is supported by the lower constraint values for those two datasets, which

continues to demonstrate the algorithm’s scalability.

We also compare our algorithm to MAPPO-Lagrange [17] in Figure 9 on all environments and constraints.

Figure 9 clearly illustrates the divergent behaviors of the two algorithms, as MAPPO-LCE steadily improves

the training reward linearly, whereas MAPPO-Lagrange initially rises but begins to decline sharply after a few

thousand steps. In MAPPO-Lagrange, � is updated by the raw cost advantages calculated by Monte Carlo returns,

which introduces high variance and non-stationarity. Over time, this results in a policy that shifts from pursuing

reward to over-constraining, causing rapid performance degradation. By contrast, MAPPO-LCE maintains an

increasing reward curve due to its learned cost estimator, which converges much faster since it is decoupled from

the policy, which allows the policy to focus on updating� �
��

and� �
��

more efectively instead of overoptimizing �.

6.2 Further Results

In Figures 11 and 12, we show the throughput and average delay results on the test set across timesteps for

the combinations of environments and constraints. Additionally, we provide experiment results for the setting

where all constraints are combined linearly to test each algorithm’s ability to handle multiple constraints in

Tables 5, 6, and 7. When evaluating this challenging setting where all constraints are combined, MAPPO-LCE

continues to achieve the highest overall reward, outperforming MAPPO, IPPO, and QTRAN by 6.43%, 0.22%,

and 4.13%, respectively (see Tables 5, 6, and 7). While the performance margins are smaller than in individual

constraint settings, this is expected due to the inherent complexity of optimizing conlicting objectives (GreenTime,

PhaseSkip, and GreenSkip simultaneously). Still, even in this more diicult scenario, MAPPO-LCE remains the

most robust algorithm, demonstrating its ability to learn balanced policies under multiple constraints. Interestingly,

IPPO occasionally achieves marginally better throughput (2.25%) and delay (0.58%) than MAPPO-LCE in this

setting, likely due to the increased optimization instability introduced by competing constraints. However, IPPO’s

gains come at the cost of higher constraint violations (see Figure 16). Figure 16 shows the summed constraint

values across the test runs on each environment. Notice that while MAPPO-LCE only attains a slightly lower

amount of constraint violations compared to IPPO on HZ (with IPPO trending lower at the end), it by far trends

the lowest on both of the more complex JN and NY datasets. This again highlights MAPPO-LCE’s ability to
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reliably enforce constraints without sacriicing quality reward optimization, as it maintains competitive or better

metrics on reward, throughput, and delay, while much more strongly minimizing constraint violations.

To further improve the efectiveness of MAPPO-LCE when there are multiple constraints, we can introduce

multiple Lagrange multipliers to measure each constraint individually instead of their aggregate. This should

result in a much more stabler cost estimator learning during training because the individual constraint dynamics

are easier to model, culminating in a policy that generalizes well to many constraints. However, introducing more

Lagrange multipliers necessitates more cost estimators, each with their separate optimizers, which could increase

the overhead of the algorithm. One potential way to circumvent this overhead is to use a shared backbone and

separate prediction heads for each constraint, but we leave this to future work.

Fig. 10. Plot of test reward on the over 500,000 timesteps for the MAPPO-LCE algorithm compared to baseline algorithms

across all environments and constraints. Plots are best viewed in color.

7 Future Work

For future work, one idea is to incorporate communication between agents, as such communication is already

implemented in practice via connected vehicle technology [1]. This would allow traic lights to communicate

information such as the number of vehicles traveling from one intersection to another, the average travel time,

and other vital data that could help discover more optimal policies. This also can be easily represented with an

underlying Graph Neural Network (GNN), which means we can add message loss to the overall loss as both the

GNN and the neural networks in each algorithm use backpropagation. Additionally, following from Section 6.1,

excessive communication may be unnecessary and potentially prohibitive. Thus, leveraging pruning strategies
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Fig. 11. Plot of throughput on the test set over 500,000 timesteps for the MAPPO-LCE algorithm compared to baseline

algorithms across all environments and constraints. Plots are best viewed in color. Plots are best viewed in color.

Environment MAPPO-LCE % Test Reward increase over comparison algorithms

MAPPO IPPO QTRAN

HZ 10.31% 0.63% 6.76%

JN 3.5% 1.0% 0.1%

NY 5.48% -0.96% 5.53%

Table 5. Comparison of the Test Reward between MAPPO-LCE and MARL baseline algorithms using a sum of all constraints

for each trafic environment.

on the communication graph, such as [12, 14, 19, 28] would help avoid redundant communication that would

perversely afect agent learning.

Another idea is to expand our constraints. Formulating our current constraints as hard constraints and adding

additional soft constraints such as variance in throughput or waiting times could more closely represent real-

world environments while creating a model that values fairness and safety. In addition, we could add further

constraints by expanding the environment to include diferent types of vehicles, such as buses, ambulances, and

trams, to develop more generalizable traic management strategies that accommodate diverse transportation

needs. Adding more signiicant constraints on their delay and waiting time could lead to more robust constraints

that better relect real-life scenarios.
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Fig. 12. Plot of average delay on the test set over 500,000 timesteps for the MAPPO-LCE algorithm compared to baseline

algorithms across all environments and constraints. Plots are best viewed in color.

Fig. 13. Plot of test Green Time constraint values over all environments and algorithms. Plots are best viewed in color.

Expanding the ways our algorithm treats constraints and is able to incorporate them is also another route

for future expansion. For example, one aspect of our algorithm is that the constraint value is globalized and

applied to all agents equally, which means we only need one cost critic and cost estimator. However, this means

we cannot model each agent to correct any individual constraint violations. Future work serves to accurately

incorporate such ine-grained control over constraint violations without the signiicant overhead of training cost

estimators for each agent.

While ATSC is a partially observable Markov Game, a inal idea is to give each agent a better idea of their

surroundings through expectation alignment. ELIGN [25] is a method for multi-agent expectation alignment that
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Fig. 14. Plot of test Green Skip constraint values over all environments and algorithms. Plots are best viewed in color.

Fig. 15. Plot of test Phase Skip constraint values over all environments and algorithms. Plots are best viewed in color.

Environment MAPPO-LCE % Throughput increase over comparison algorithms

MAPPO IPPO QTRAN

HZ 17.75% -0.73% 0.37%

JN 7.25% 2.66% 1.39%

NY 36.93% -8.69% 24.84%

Table 6. Comparison of the Test Throughput metric between MAPPO-LCE and MARL baseline algorithms using a sum of all

constraints for each trafic environment.

Environment MAPPO-LCE % Average Delay decrease over comparison algorithms

MAPPO IPPO QTRAN

HZ 14.87% -0.99% 6.12%

JN 4.74% 1.41% 1.44%

NY 5.19% -2.17% 5.23%

Table 7. Comparison of the Test Average Delay metric between MAPPO-LCE and MARL baseline algorithms using a sum of

all constraints on each trafic environment.

aligns the shared expectations of an agent to its actual actions through an intrinsic reward. Predicting neighboring

agents’ actions in a second-order theory of mind approach allows for better coordination and can easily be added
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Fig. 16. Plot of summed test constraint values over all environments and algorithms. Plots are best viewed in color.

to existing methods to ind more optimal policies. In the ATSC problem, this may allow each agent to predict

swells or dips in traic before they reach the intersection that the agent controls, further increasing its ability to

make realistic traic policies.

8 Conclusion

In this paper, we focus on inding scalable algorithms for the Adaptive Traic Signal Control problem in real-world

traic environments. We propose a novel algorithm, MAPPO-LCE, for constrained multi-agent reinforcement

learning. We expand upon Multi-Agent Proximal Policy Optimization (MAPPO) by incorporating elements of

MAPPO-Lagrangian [17] and introducing a Lagrange Cost Estimator to accurately predict constraints even under

unstable conditions. While we only focused on three constraints, MAPPO-LCE can be used with any number of

general traic constraints and can be extended to any constrained MARL problem. Our experimental results using

the CityFlow environment in multiple real-world settings show that MAPPO-LCE outperforms other baseline

methods with suitable constraints. Our indings indicate that constrained multi-agent reinforcement learning can

identify more optimal traic policies for ATSC in real-world conditions and holds strong potential for real-world

deployment.

References

[1] Ghadeer Abdelkader, Khalid Elgazzar, and Alaa Khamis. 2021. Connected Vehicles: Technology Review, State of the Art, Challenges and

Opportunities. Sensors 21, 22 (2021). doi:10.3390/s21227712

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained policy optimization. In International conference on

machine learning. PMLR, 22ś31.

[3] Fahmy Adan, Yuxiang Feng, Panagiotis Angeloudis, Mohammed Quddus, and Washington Ochieng. 2023. Constrained Multi-Agent

Reinforcement Learning Policies for Cooperative Intersection Navigation and Traic Compliance. In 2023 IEEE 26th International

Conference on Intelligent Transportation Systems (ITSC). 4079ś4085. doi:10.1109/ITSC57777.2023.10422440

[4] Mohammad Aslani, Mohammad Saadi Mesgari, and Marco Wiering. 2017. Adaptive traic signal control with actor-critic methods in

a real-world traic network with diferent traic disruption events. Transportation Research Part C: Emerging Technologies 85 (2017),

732ś752. doi:10.1016/j.trc.2017.09.020

[5] Tianshu Bao, Hua Wei, Junyi Ji, Daniel Work, and Taylor Thomas Johnson. 2024. Spatial-Temporal PDE Networks for Traic Flow

Forecasting. In Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track: European Conference, ECML PKDD

2024, Vilnius, Lithuania, September 9ś13, 2024, Proceedings, Part X (Vilnius, Lithuania). Springer-Verlag, Berlin, Heidelberg, 166ś182.

doi:10.1007/978-3-031-70381-2_11

[6] Dimitri P. Bertsekas. 1996. Constrained Optimization and Lagrange multiplier methods. Athena Scientiic.

[7] G Brockman. 2016. OpenAI Gym. arXiv preprint arXiv:1606.01540 (2016).

[8] Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui Li. 2020. Toward A Thousand Lights:

Decentralized Deep Reinforcement Learning for Large-Scale Traic Signal Control. Proceedings of the AAAI Conference on Artiicial

Intelligence 34, 04 (Apr. 2020), 3414ś3421. doi:10.1609/aaai.v34i04.5744

ACM J. Auton. Transport. Syst.

https://doi.org/10.3390/s21227712
https://doi.org/10.1109/ITSC57777.2023.10422440
https://doi.org/10.1016/j.trc.2017.09.020
https://doi.org/10.1007/978-3-031-70381-2_11
https://doi.org/10.1609/aaai.v34i04.5744


22 • A. Satheesh and K. Powell

[9] Yue Chen, Changle Li, Wenwei Yue, Hehe Zhang, and Guoqiang Mao. 2021. Engineering A Large-Scale Traic Signal Control: A

Multi-Agent Reinforcement Learning Approach. In IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS). 1ś6. doi:10.1109/INFOCOMWKSHPS51825.2021.9484451

[10] Seung-Bae Cools, Carlos Gershenson, and Bart D’Hooghe. 2007. Self-Organizing Traic Lights: A Realistic Simulation. Springer London,

41ś50. doi:10.1007/978-1-84628-982-8_3

[11] Eddie Curtis. 2017. EDC-1: Adaptive Signal Control Technology | Federal Highway Administration. https://www.fhwa.dot.gov/

innovation/everydaycounts/edc-1/asct.cfm

[12] Abhishek Das, Théophile Gervet, Joshua Romof, Dhruv Batra, Devi Parikh, Michael Rabbat, and Joelle Pineau. 2020. TarMAC: Targeted

Multi-Agent Communication. arXiv:1810.11187 [cs.LG] https://arxiv.org/abs/1810.11187

[13] Christian Schroeder DeWitt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS Torr, Mingfei Sun, and ShimonWhiteson.

2020. Is independent learning all you need in the starcraft multi-agent challenge? arXiv preprint arXiv:2011.09533 (2020).

[14] Shifei Ding, Wei Du, Ling Ding, Lili Guo, and Jian Zhang. 2024. Learning Eicient and Robust Multi-Agent Communication via Graph

Information Bottleneck. Proceedings of the AAAI Conference on Artiicial Intelligence 38, 16 (Mar. 2024), 17346ś17353. doi:10.1609/aaai.

v38i16.29682

[15] Mohamed Essa and Tarek Sayed. 2020. Self-learning adaptive traic signal control for real-time safety optimization. Accident Analysis &

Prevention 146 (2020), 105713. doi:10.1016/j.aap.2020.105713

[16] Hankang Gu, Shangbo Wang, Xiaoguang Ma, Dongyao Jia, Guoqiang Mao, Eng Gee Lim, and Cheuk Pong Ryan Wong. 2024. Large-Scale

Traic Signal Control Using Constrained Network Partition and Adaptive Deep Reinforcement Learning. Trans. Intell. Transport. Sys. 25,

7 (April 2024), 7619ś7632. doi:10.1109/TITS.2024.3352446

[17] Shangding Gu, Jakub Grudzien Kuba, Munning Wen, Ruiqing Chen, Ziyan Wang, Zheng Tian, Jun Wang, Alois Knoll, and Yaodong

Yang. 2022. Multi-Agent Constrained Policy Optimisation. arXiv:2110.02793 [cs.AI] https://arxiv.org/abs/2110.02793

[18] Ammar Haydari, Vaneet Aggarwal, Michael Zhang, and Chen-Nee Chuah. 2024. Constrained Reinforcement Learning for Fair and

Environmentally Eicient Traic Signal Controllers. ACM J. Auton. Transport. Syst. 2, 1, Article 2 (Sept. 2024), 19 pages. doi:10.1145/

3676169

[19] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. 2024. Learning Multi-Agent Communication from Graph Modeling Perspective.

arXiv:2405.08550 [cs.LG] https://arxiv.org/abs/2405.08550

[20] Xingshuai Huang, Di Wu, and Benoit Boulet. 2023. Fairness-Aware Model-Based Multi-Agent Reinforcement Learning for Traic Signal

Control. https://openreview.net/forum?id=sy0PqUr2fq9

[21] Jiechuan Jiang and Zongqing Lu. 2019. Learning fairness in multi-agent systems. Advances in Neural Information Processing Systems 32

(2019).

[22] Qize Jiang, Minhao Qin, Shengmin Shi, Weiwei Sun, and Baihua Zheng. 2022. Multi-Agent Reinforcement Learning for Traic

Signal Control through Universal Communication Method. In Proceedings of the Thirty-First International Joint Conference on Artiicial

Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, Luc De Raedt (Ed.). ijcai.org, 3854ś3860. doi:10.24963/ijcai.2022/535

[23] Michael L. Littman. 2001. Friend-or-Foe Q-learning in General-Sum Games. In Proceedings of the Eighteenth International Conference on

Machine Learning (ICML ’01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 322ś328.

[24] Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Başar, and Lior Horesh. 2021. Decentralized policy gradient descent ascent for safe

multi-agent reinforcement learning. In Proceedings of the AAAI conference on artiicial intelligence, Vol. 35. 8767ś8775.

[25] Zixian Ma, Rose Wang, Fei-Fei Li, Michael Bernstein, and Ranjay Krishna. 2022. Elign: Expectation alignment as a multi-agent intrinsic

reward. Advances in Neural Information Processing Systems 35 (2022), 8304ś8317.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013.

Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602 [cs.LG] https://arxiv.org/abs/1312.5602

[27] Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. 2017. Traic Light Control Using Deep Policy-Gradient and Value-Function

Based Reinforcement Learning. arXiv:1704.08883 [cs.LG] https://arxiv.org/abs/1704.08883

[28] Yaru Niu, Rohan Paleja, and Matthew Gombolay. 2021. Multi-Agent Graph-Attention Communication and Teaming. In Proceedings of

the 20th International Conference on Autonomous Agents and MultiAgent Systems. 964ś973.

[29] Afshin Oroojlooy, Mohammadreza Nazari, Davood Hajinezhad, and Jorge Silva. 2020. AttendLight: Universal Attention-Based Rein-

forcement Learning Model for Traic Signal Control. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,

R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 4079ś4090. https://proceedings.neurips.cc/paper_iles/paper/

2020/ile/29e48b79ae6fc68e9b6480b677453586-Paper.pdf

[30] Hali Pang and Weilong Gao. 2019. Deep Deterministic Policy Gradient for Traic Signal Control of Single Intersection. In 2019 Chinese

Control And Decision Conference (CCDC). 5861ś5866. doi:10.1109/CCDC.2019.8832406

[31] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. 2021. Benchmarking Multi-Agent Deep Reinforcement

Learning Algorithms in Cooperative Tasks. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks

(NeurIPS). http://arxiv.org/abs/2006.07869

ACM J. Auton. Transport. Syst.

https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484451
https://doi.org/10.1007/978-1-84628-982-8_3
https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/asct.cfm
https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/asct.cfm
https://arxiv.org/abs/1810.11187
https://arxiv.org/abs/1810.11187
https://doi.org/10.1609/aaai.v38i16.29682
https://doi.org/10.1609/aaai.v38i16.29682
https://doi.org/10.1016/j.aap.2020.105713
https://doi.org/10.1109/TITS.2024.3352446
https://arxiv.org/abs/2110.02793
https://arxiv.org/abs/2110.02793
https://doi.org/10.1145/3676169
https://doi.org/10.1145/3676169
https://arxiv.org/abs/2405.08550
https://arxiv.org/abs/2405.08550
https://openreview.net/forum?id=sy0PqUr2fq9
https://doi.org/10.24963/ijcai.2022/535
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1704.08883
https://arxiv.org/abs/1704.08883
https://proceedings.neurips.cc/paper_files/paper/2020/file/29e48b79ae6fc68e9b6480b677453586-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/29e48b79ae6fc68e9b6480b677453586-Paper.pdf
https://doi.org/10.1109/CCDC.2019.8832406
http://arxiv.org/abs/2006.07869


A Constrained Multi-Agent Reinforcement Learning Approach to Autonomous Trafic Signal Control • 23

[32] Majid Raeis and Alberto Leon-Garcia. 2021. A Deep Reinforcement Learning Approach for Fair Traic Signal Control. In 2021 IEEE

International Intelligent Transportation Systems Conference (ITSC) (Indianapolis, IN, USA). IEEE Press, 2512ś2518. doi:10.1109/ITSC48978.

2021.9564847

[33] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster, and Shimon Whiteson. 2018.

QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning. arXiv:1803.11485 [cs.LG] https:

//arxiv.org/abs/1803.11485

[34] Stefano Giovanni Rizzo, Giovanna Vantini, and Sanjay Chawla. 2019. Reinforcement Learning with Explainability for Traic Signal

Control. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC). 3567ś3572. doi:10.1109/ITSC.2019.8917519

[35] Umer Siddique, Paul Weng, and Matthieu Zimmer. 2020. Learning Fair Policies in Multi-Objective (Deep) Reinforcement Learning

with Average and Discounted Rewards. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine

Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 8905ś8915. https://proceedings.mlr.press/v119/siddique20a.html

[36] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. 2019. Qtran: Learning to factorize with transformation

for cooperative multi-agent reinforcement learning. In International conference on machine learning. PMLR, 5887ś5896.

[37] Daniel Tabas, Ahmed S Zamzam, and Baosen Zhang. 2023. Interpreting Primal-Dual Algorithms for Constrained Multiagent Reinforce-

ment Learning. In Learning for Dynamics and Control Conference. PMLR, 1205ś1217.

[38] Shijie Wang and Shangbo Wang. 2023. A Novel Multi-Agent Deep RL Approach for Traic Signal Control. arXiv:2306.02684 [cs.AI]

https://arxiv.org/abs/2306.02684

[39] Tianyu Wang, Teng Liang, Jun Li, Weibin Zhang, Yiji Zhang, and Yan Lin. 2020. Adaptive Traic Signal Control Using Distributed

MARL and Federated Learning. In 2020 IEEE 20th International Conference on Communication Technology (ICCT). 1242ś1248. doi:10.1109/

ICCT50939.2020.9295660

[40] Ziyan Wang, Meng Fang, Tristan Tomilin, Fei Fang, and Yali Du. 2024. Safe Multi-agent Reinforcement Learning with Natural Language

Constraints. arXiv preprint arXiv:2405.20018 (2024).

[41] Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li. 2019. PressLight: Learning Max Pressure

Control to Coordinate Traic Signals in Arterial Network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (Anchorage, AK, USA) (KDD ’19). Association for Computing Machinery, New York, NY, USA, 1290ś1298.

doi:10.1145/3292500.3330949

[42] Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang, Yanmin Zhu, Kai Xu, and Zhenhui Li.

2019. CoLight: Learning Network-level Cooperation for Traic Signal Control. In Proceedings of the 28th ACM International Conference

on Information and Knowledge Management (Beijing, China) (CIKM ’19). Association for Computing Machinery, New York, NY, USA,

1913ś1922. doi:10.1145/3357384.3357902

[43] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. 2022. The surprising efectiveness of ppo

in cooperative multi-agent games. Advances in Neural Information Processing Systems 35 (2022), 24611ś24624.

[44] Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong Yu, Haiming Jin, and Zhenhui Li.

2019. Citylow: A multi-agent reinforcement learning environment for large scale city traic scenario. In The world wide web conference.

3620ś3624.

[45] Yuli Zhang, Shangbo Wang, Xiaoguang Ma, Wenwei Yue, and Ruiyuan Jiang. 2023. Large-Scale Traic Signal Control by a Nash Deep

Q-network Approach. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). 4584ś4591. doi:10.1109/

ITSC57777.2023.10422534

[46] Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai Xu, and Zhenhui Li. 2019. Learning Phase

Competition for Traic Signal Control. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management

(Beijing, China) (CIKM ’19). Association for Computing Machinery, New York, NY, USA, 1963ś1972. doi:10.1145/3357384.3357900

[47] Guanjie Zheng, Xinshi Zang, Nan Xu, Hua Wei, Zhengyao Yu, Vikash Gayah, Kai Xu, and Zhenhui Li. 2019. Diagnosing Reinforcement

Learning for Traic Signal Control. arXiv:1905.04716 [cs.LG] https://arxiv.org/abs/1905.04716

[48] Wei Zhou, Dong Chen, Jun Yan, Zhaojian Li, Huilin Yin, and Wanchen Ge. 2022. Multi-agent reinforcement learning for cooperative lane

changing of connected and autonomous vehicles in mixed traic. Autonomous Intelligent Systems 2, 1 (March 2022). doi:10.1007/s43684-

022-00023-5

A Hyperparameter Selection
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We use the same hyperparameters since all of our baseline algorithms are adapted from the ePYMARL library

[31]. We provide a full list of algorithmic environment hyperparameters in Table 8. For the constraint trade-of
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(MLP), with two hidden layers and a hidden layer size of 128. We also use an Adam optimizer with a learning

rate of 10−4 to train the cost estimator. We set the cost limit for all experiments to 0.

A.2 Environment Hyperparameters

Each time step in the environment is composed of �� inner steps to update the environment, which we set to 10.

Thus, simulating for 500,000 steps is the same as simulating approximately 1400 episodes. After the policy selects

an action, each inner step simulates 1 second of the environment. To simulate yellow lights without actually

implementing them directly, each traic light instead turns of all lights that would be switched between phases

for �� time before fully turning them red or green. We set �� to 5 time steps, which is equivalent to 5 seconds.

Each constraint also has a hyperparameter that controls its severity. For constraint thresholds, we set ���� ����

to 40, ���� ����� to 16, and ���� ����� to 4.

Table 8. Hyperparameter Comparison of RL Algorithms

Hyperparameter IPPO MAPPO QTRAN MAPPO-LCE

Epsilon Start 1.0 1.0 1.0 1.0

Epsilon Finish 0.05 0.05 0.05 0.05

Epsilon Anneal Time 500000 500000 500000 500000

Learning Rate (lr) 0.00005 0.0005 0.0005 0.00005

Gamma 0.985 0.985 0.985 0.985

Hidden Dim 128 128 32 128

Grad Norm Clip 10 10 5 10

Critic Coef 0.5 0.5 - 0.5

Entropy Coef 0 0 - 0

Reg Coef 0.01 0.01 - 0.01

GAE Lambda 0.95 0.95 - 0.95

Mini Epochs 2 2 1 2

Eps Clip 0.15 0.15 - 0.15

Target Update Interval 200 200 200 200

Mixing Embed Dim - - 64 -

Opt Loss - - 1 -

Nopt Loss - - 0.1 -

Lambda Init - - - 0.01

Lambda LR - - - 0.0001

Batch Size 8 8 8 8

Bufer Size 8 8 8 8
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