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A Constrained Multi-Agent Reinforcement Learning Approach to
Autonomous Traffic Signal Control
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Traffic congestion in modern cities is exacerbated by the limitations of traditional fixed-time traffic signal systems, which
fail to adapt to dynamic traffic patterns. Adaptive Traffic Signal Control (ATSC) algorithms have emerged as a solution by
dynamically adjusting signal timing based on real-time traffic conditions. However, the main limitation of such methods is they
are not transferable to environments under real-world constraints, such as balancing efficiency, minimizing collisions, and
ensuring fairness across intersections. In this paper, we view the ATSC problem as a constrained multi-agent reinforcement
learning (MARL) problem and propose a novel algorithm named Multi-Agent Proximal Policy Optimization with Lagrange
Cost Estimator (MAPPO-LCE) to produce effective traffic signal control policies. Our approach integrates the Lagrange
multipliers method to balance rewards and constraints, with a cost estimator for stable adjustment. We also introduce three
novel constraints on the traffic network: GreenTime, GreenSkip, and PhaseSkip, which penalize traffic policies that do
not conform to real-world scenarios. Our experimental results on three real-world datasets demonstrate that MAPPO-LCE
outperforms three baseline MARL algorithms by across all environments and traffic constraints (improving on MAPPO by
12.60%, IPPO by 10.29%, and QTRAN by 13.10%). Our results show that constrained MARL is a valuable tool for traffic planners
to deploy scalable and efficient ATSC methods in real-world traffic networks.

CCS Concepts: » Computing methodologies — Multi-agent planning; Multi-agent reinforcement learning; Partially-
observable Markov decision processes; - Mathematics of computing — Nonconvex optimization.

Additional Key Words and Phrases: Multi-Agent, Traffic Signal Control, Reinforcement Learning, Constrained Optimization,
Lagrange Multipliers

1 Introduction

Traditional traffic signal systems, which operate on pre-programmed, fixed schedules, are often inadequate in
addressing the dynamic nature of urban traffic flow due to an inability to adapt to constantly changing traffic
patterns. This can result in longer waiting times and unfair traffic distributions across intersections [11]. To
combat the limitations of traditional fixed-time traffic signal systems, Adaptive Traffic Signal Control (ATSC)
methods have been developed to adjust signal timing based on real-time traffic conditions dynamically. However,
while ATSC methods hold promise in reducing congestion in busy intersections, there are still uncertainties
about their deployment in real-world environments. One challenge is balancing efficiency while minimizing
vehicle collisions and other hazards [15]. Another challenge is maximizing the fairness of each intersection, or
ensuring that the green times (amount of time the current traffic light is green) for different lanes are the same
on average [32]. In general, these challenges highlight the ongoing struggles with incorporating constraints into
ATSC methods that accurately reflect the demands of real-world environments.
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Previous works on ATSC use the observations of the intersections to form traffic control policies, such
as SOTL [10]. However, these are heuristic-based and cannot adapt to more complex traffic environments.
Additionally, they do not consider how current actions can affect future states, which hinders long-term outcomes.
Reinforcement Learning (RL) has also been used to develop autonomous traffic control methods by optimizing
over current and future states [46]. This includes actor-critic methods [4] and policy gradient methods [27, 30] on
single intersections [29] and multi-intersection environments [8, 42]. RL has also been used for non-traditional
intersections such as roundabouts [34] and dynamical lane changing systems [48].

Due to the exponentially growing action space of reinforcement learning as the number of intersections
increases, it becomes difficult to learn effective single-agent RL policies that can adapt to non-stationary en-
vironments like traffic signal control. As such, some works formulate ATSC as a decentralized Multi-Agent
Reinforcement Learning (MARL) problem, using several agents to represent each intersection instead of one
agent as a global traffic controller. This allows each intersection to act as its own local RL agent under partial
observability and maximize its utility along with the global utility [38, 39, 48]. Additional work serves to improve
baseline MARL algorithms by improving sample efficiency [20], or adding information to the state space to
mitigate partial observability, such as communication methods [22] and environment modeling [5, 41].

Due to the efficacy of MARL in solving high-dimensional traffic control problems and current struggles with
incorporating constraints that reflect real-world environments, we propose a constrained MARL algorithm
named Multi-Agent Proximal Policy Optimization with Lagrange Cost Estimator (MAPPO-LCE). Specifically, the
algorithm uses the Lagrange multipliers method to balance the constraints with maximizing rewards. MAPPO-
LCE builds on existing constrained MARL algorithms such as MAPPO-Lagrange by introducing a cost estimator
to alleviate the unstable policy updates when using the advantage functien to update the Lagrange parameter.

Our contributions can be summarized as follows:

(1) We define three novel constraint functions: GreenSkip, GreenTime, and PhaseSkip, which penalize policies
that do not reflect real-world scenarios.

(2) We propose a constrained MARL algorithm for multiintersection traffic control and introduce a Lagrange
Cost Estimator to alleviate potentially unstable constraint updates when using the advantage function.

(3) We show experimentally that MAPPO-LCE outperforms three baseline MARL algorithms on three different
datasets.

(4) Our results show that constrained MARL can be a valuable tool for traffic planners to deploy ATSC methods
in real-world traffic networks to reduce congestion.

2 Related Work

In this section, we discuss recent work on MARL algorithms and general constraints for ATSC.

2.1 MARL for ATSC

Recent work uses multi-agent reinforcement learning to model traffic signal control, with each agent controlling
one intersection under partial observability. Wang et al. [39] developed independent and joint Advantage Actor-
Critic (A2C) algorithms for ATSC with a centralized critic in a distributed setting. Chen et al. [9] also leverages
A2C in a multi-agent setting, using decentralized critics for each agent in a distributed network. In addition to
on-policy algorithms, previous works use multi-agent off-policy algorithms for ATSC. For example, Zhang et al.
[45] uses Nash Q-Learning to alleviate the large state-action space from traditional MARL algorithms. Wang
and Wang [38] improves on this by using a Deep Q-Network [26] with Friend Q-Learning [23] to achieve better
coordination between agents.

Other ways to improve MARL algorithms in ATSC are to include additional information in each agent’s
observation space to create more informed policies. However, including more information does not always lead
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to better results, as this can require more parameters and a slower convergence rate [47]. Thus, selecting the right
information to include between agents is crucial for performance. Huang et al. [20] use a model-based approach
by learning a global probabilistic dynamics model along with the policy, which generates a prediction of the
next states as additional information. This method is purely decentralized, where there is no interaction between
agents. Thus, Jiang et al. [22] develops UniComm, a method that computes only the necessary information
between neighbor agents, which is used in their UniLight algorithm to calculate Q values for each agent.

2.2 Constraints for ATSC

Solving environments with incorporated constraints is difficult due to balancing rewards and costs from the
constraints. Constrained Reinforcement Learning (CRL) is an active research area in RL that solves such environ-
ments by developing algorithms that exclusively learn policies that are both effective and satisfy the constraints
(e.g. safety, fairness, etc.) [2, 17, 24]. Achiam et al. [2] develops a Constrained Policy Optimization (CPO) algorithm
to learn policies under constraints, and Gu et al. [17] expands this into a multi-agent setting with MACPO and
MAPPO-Lagrange. Tabas et al. [37] improve upon MACPO by developing a primal-dual optimization framework
and parameterizing each agent with a neural network.

In ATSC, there is minimal work on incorporating constraints into the environment to develop policies closer
to real-world scenarios. Gu et al. [16] partitions the traffic network topology to alleviate scalability issues with
MARL, but this only constrains the state space, not the action space. Haydari et al. [18] use the CRL framework
with the amount of emissions as the constraint and develop a Soft Actor-Critic algorithm to balance rewards with
constraints. However, this is a single-agent setting, which poses scalability issues as the number of intersections
increases. Adan et al. [3] models traffic environment constraints in a multi-agent setting, but this work models
agents as the vehicles around one intersection, instead of each intersection being an agent. Finally, Raeis and
Leon-Garcia [32] creates two fairness constraints for the ATSC problem, one delay-based metric which is meant
to diminish the number of vehicles experiencing significantly longer waiting times and another throughput-
based metric which attempts to give equal weighting to all traffic flows by extending concepts from computer
networking. However, this is also a single agent setting in a more simplistic environment and is focused more
specifically on fairness between the North-South and East-West traffic flows instead of constraints under general
traffic network topologies.

3 Preliminaries

In this section, we define the Constrained Markov Game, the RL environment, and our constraints for ATSC.

3.1 Constrained Markov Game for ATSC

We can model ATSC as a constrained Markov Game [40] which can be represented by the tuple M = (N, S,

{0i}tiens {Aitiens T, Q,C, ¢, y), where N = {1,2,...,n} is a set of n agents; S is the state space; O = X;e5O; is
the joint observation space, where O; is the observation space of agent i; A = X;ec A/A; is the joint action space,
where A; is the action space of agent i; T : S X A X S — [0, 1] is probabilistic state transition function; R is the
reward function; Q : S X AX O — [0, 1] is space of conditional observation probabilities (Q(s’, a, 0) = P(ol|s’, a));
C : S X A — R is the cost function; and c is the cost limit. Since this is a decentralized Markov Game, the reward
function for each agent is the same, e.g. R = R; Vi € N. MARL algorithms for constrained Markov Games aim to
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Fig. 1. 8 actions corresponding to the 8 phases for each intersection of traffic lights. Each phase corresponds to two traffic

lights being on at the same time (e.g. the second box indicates vehicles are allowed to continue heading east or turn left to
head north).

search for policy 7 that solves this constrained optimization problem:
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In the ATSC problem specifically, the elements of the environment are defined as:

e Agents: Each agent is responsible for controlling traffic lights at one intersection.

e Observation: The observation of each agent is composed of the characteristics of the corresponding
intersection. Specifically, each intersection has 12 road links (vehicles turning left, right, and going straight
in each cardinal direction), and each road link contains the number of vehicles moving, the number of
vehicles waiting, the traffic light phase, and the number of vehicles in each lane, as well as the speed and
location of each vehicle in the lane.

e Actions: As shown in Figure 1, there are eight phases that describe combinations of traffic lights that can
be green simultaneously. At each timestep, the intersection can choose one of these phases as an action.

o STATE: The state is the combination of all observations at the current time step.

o STATE Transition: After an action is selected at each time step, vehicles are allowed to move if the
corresponding traffic light is green for a short period T;. While the environment does not directly represent
yellow lights, before changing phases, all lights that would be turned on/off are turned to red for a brief
period T, before the lights of the new phase are turned to green.

e Reward: Each agent will receive a global reward A¢Rf + Ay,R,,, where Ry is the total number of vehicles
moving, R,, is the total number of vehicles waiting, and Ar and A,, are hyperparameters.

For more information on environment parameters, refer to Appendix A.

3.2 Environment Constraints

We develop three novel environment constraints on each intersection that reflect real-world environments named
GreenTime, PhaseSkip, and GreenSkip. These constraints also help to promote fair treatment of all vehicles by the
agents by reducing differences in waiting times between directions and encouraging agents to take all possible
actions.

e GreenTime: Each light I should be green for no more than G4y time before turning red to prevent long
waiting times from other lanes, and model light cycles in the real world. Each time step that a light is on
increases its GreenTime value by 1, and when it is turned off its GreenTime value is constant at 0. This
ensures that no specific lane is green for an unrealistically large amount of time. Right-turn lights are
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ignored for this constraint, as they are always treated as being on.

Gtime(l) < Gmax time (1)

e PhaseSkip: The state of each traffic light follows one of a specific, pre-determined set of phases (see Figure
1). No phase should be skipped consecutively more than Py, skip times. Each time the phase changes, the
new phase has its PhaseSkip value set to 0, and all phases other than the new phase and the old phase have
their PhaseSkip values incremented by 1. This is a way of somewhat closely approximating how traffic
cycles work in the real world, by rotating roughly evenly between possible phases, as well as being an
indirect way of promoting the agent to give equal attention to all lanes.

Pskips (P) < Prax skips (2)

o GreenSkip: Similar to the phase constraint, no individual light I should be skipped consecutively more than
Gmax skips times. Each time the phase changes, each light turned on in the new phase has its GreenSkip value
set to 0, and all lights not on in the new phase or the old phase have their GreenSkip values incremented
by 1. This is a direct way of promoting fairness by reducing the variance in waiting times among all lanes,
as this ensures that if the phase is continuously changing, each lane will receive some amount of attention
within the phase cycle. Right-turn lights are also ignored for this constraint.

Gskips(l) < Gax skips (3)

Each agent is constrained according to Eqns 1-3. The penalty associated with each constraint is the average
across all lights:

g
ZieN Zimn
IV

where 1. is an indicator function that checks whether the constraint is satisfied, i is the intersection, |N| is the
number of agents, [ is a specific light at the intersection the agent controls, and n;(i) is the total number of lights
at the intersection that particular agent controls. Note that for the PhaseSkip constraint, we sum over the phases
and divide by the total number of phases. For our experiments, the number of lights is always 12 and the number
of phases is always equal to 8, as all the intersections in our environment have 4 roads of 3 lanes with 8 distinct
phases. The exact algorithms for calculating each constraint can be referenced in Algorithms 1, 2, and 3, and
examples for each constraint can be seen in Figures 2, 3, 4.

4)

3.3 Comparison to Alternate Fairness Definitions

Our fairness constraints offer two key advantages over alternative definitions commonly used in multi-agent
reinforcement learning (MARL): they are more interpretable and can be naturally integrated into the constrained
MARL framework, which is significantly easier to optimize. Two widely used approaches for incorporating fairness
into reinforcement learning are Generalized Gini Functions (GGFs) [35] and the Coefficient of Variation [21].

GGFs work by defining a sorted D-dimensional vector of agent utilities v and a corresponding sorted weight
vector w, then computing their dot product. This presents two challenges in comparison to our approach. First,
managing how the sorted objective vector v evolves as policies are updated becomes increasingly complex as
the number of agents grows. Second, GGFs lack the intuitive interpretability of our constraints. For instance,
when using GreenTime as a constraint in traffic networks, traffic planners can directly observe the duration of
green lights and how constraint violations decrease over time (see Section 6.2), making the fairness behavior
more transparent.

The Coefficient of Variation, another alternative, measures the variation of agents’ utilities around their mean.
While this is an interpretable metric, it is difficult to optimize because it is embedded directly into the reward
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Fig. 2. The figure above shows an example of the GreenTime constraint, with time shown ast=, and the array being the
constraint value for each light in the example intersection. As explained above, each lights GreenTime value is simply the
time it has been on in a row, with larger values being penalized.

function and thus requires coordination through a joint policy across all agents. In contrast, our method decouples
constraint dynamics from the primary objective by introducing a separate MDP to manage constraint learning.
This separation avoids the scalability and optimization issues that joint reward-based fairness formulations have.

Algorithm 1 GreenTime Calculation

1: for time =1 to N do

2. for light in lights do

3 if light is ON in the current phase then

4 green_time[light] < green_time[light] + 1
5 else

6 green_time[light] < 0

7 end if

8. end for

9: end for

Algorithm 2 PhaseSkip Calculation

1: for time =1 to N do

2. if new_phase # old_phase then

3 for phase in phases do

4 if (phase # old_phase) and (phase # new_phase) then
5: phase_skips[phase] < phase_skips[phase] + 1

6: end if

7: end for

8: phase_skips[new_phase] < 0

9: endif

10: end for
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Fig. 3. The figure above shows an example of the PhaseSkip constraint, with time shown as t=, and the array being the
constraint value for each phase in the example intersection. As explained above, each phase’s PhaseSkip value is simply the
number of times it has been passed over in phase changes without being selected or being the previous phase, with larger
values being penalized.

Algorithm 3 GreenSkip Calculation

1: for time =1 to N do

if new_phase # old_phase then

green_skips[light] < 0

2:
3 for light in lights do
4:
5:
6:
7:
8: end if
9: end for
10 end if
11: end for

if (light is RED in old_phase) and (RED in new_phase) then
green_skips[light] < green_skips[light] + 1

ACM J. Auton. Transport. Syst.
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Fig. 4. The figure above shows an example of the GreenSkip constraint at time t, and the array being the constraint value for
each light in the example intersection. As explained above, each light’s GreenSkip value is simply the number of times it
has been passed over in phase changes without being selected or being on in the previous phase, with larger values being
penalized.

4  Method

In this section, we describe our constrained multi-agent reinforcement learning algorithm: Multi-Agent Proximal
Policy Optimization with Lagrange Cost Estimator (MAPPO-LCE).

4.1 Multi-Agent Proximal Policy Optimization with Lagrange Cost Estimator

Constrained optimization problems are typically of the form
max f (x)
X
st.g(x) <c
which can be solved by the Lagrange multiplier method
L(x;4) = f(x) = A(g(x) —¢) ©)

where £(x; A) is a new optimization objective to maximize and A > 0 is the Lagrange multiplier. [6]. Thus, for
the constrained MARL problem,

max E(s,~5.a,~79) ;ytr(st, a:)l, (6)
st B(s,~s,a,~m0) [Z th(st’ at)l <c (7)
=0
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we can formulate it with a Lagrangian where
f(x) = E(s,~5,at~7z) [Z Ytr(sta at)l (8)

t=0

D, at)} )

t=0

g(x) = E(st~5,a,~n’)

In MAPPO-LCE, we use a reward critic and a cost critic, ng and V¢ , for estimating the discounted cumulative

reward and discounted cumulative cost, respectively. We choose to build off of MAPPO because we require
only one actor and one critic model during training and inference, which reduces the computation and memory
requirements of the algorithm. Instead of training on every step, we also collect a dataset D containing rollout
data every episode: {s;, 1y, ¢;, S¢4+1}. After B episodes, we update the policy. Similar to MAPPO-Lagrange [17], we
aim to minimize the following loss:

L(mg) = Ly (mp) — ALc(mp) (10)
where £, and L, are the MAPPO [43] actor losses with an unclipped critic loss term:

L, (7p) =Es,~D.a;~mp [ min (p,A}, clip(p;, 1+ e)A;)]

1 -
E||V¢r(s,) -l (11)
Lc(mg) =Es,~p,a;~my [ min (ptAf, clip(ps, 1 £ e)Ag)]

+ IBEStND

+ ﬂEstND 2

X ,
SIIV; (se) = cell? (12)

In these formulations, p; is the importance sampling ratio

_ 7o (arlst)
, = 2t
ﬂgold (al |St)
A{ and AJ are the cost advantage and reward advantage functions respectively, and € is the clipping parameter.
Here, we abuse notation and say that A = AY(s;, a;) and A} = A} (s, a;). We also update the reward critic model
Vq; and the cost critic model V; by their respective temporal difference error (TDE):
L4y =By |1+ 1V (5041) =V, (50 (13)

Ly, =E(s, 50:)~D [Ct +yVy (sea1) = Vg, (St)] (14)

In MAPPO-Lagrange [17], the Lagrange multiplier A is updated by the mean of the cost advantage function
A{. This works in theory because the cost advantage function measures how much constraint violation occurs
in a certain state when taking a particular action, compared to the mean constraint violation over all actions.
Thus, if taking an action in a state results in a negative cost advantage, A should be increased to alleviate this.
However, since the advantage function only converges during the policy learning process, it may take many
iterations to accurately estimate the constraint violation. During this time, the estimates can be unstable and
potentially incorrect. To address this issue, we incorporate a Lagrange Cost Estimator to provide more stable and
reliable estimates of constraint violations. This cost estimator quickly learns the cost dynamics within the first
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few iterations to accurately predict the cost, and then updates A. We train the cost estimator ¢ by minimizing
the following loss:

LQC = ||9C(St, at) - Ct||2, Sy ~ D, ag ~ Ty (15)

Finally, we update A with the following loss to ensure that the constraint function is satisfied under the cost limit
c:

L) =Eg~p.ay~mp [-A(0c (51, a) = )] (16)

as the loss is minimized when the estimated cost is much less than the cost limit. One consideration is that instead
of updating the policy in a fully online manner, we perform rollouts of the MARL policy for one episode and
store the trajectories (containing the state, action, reward, cost, and next state) in a replay buffer. Then during
training, we randomly sample from this replay buffer. The main advantage is that each agent learns from a more
diverse set of environment updates and reduces the variance of gradient updates. Additionally, we clamp A to be
greater than zero to ensure that the policy is always penalized when the constraints are violated. Finally, to allow
for smoother transitions between updates in the actor model and the critic models, we perform soft updates
using the frozen versions of the models used in the Temporal Difference Error calculations. We display the full
algorithm in Algorithm 4.

Algorithm 4 MAPPO-LCE Algorithm

Initialize replay buffer D, policy parameters 6, critic networks V7, V¢f, cost network 0¢, and Lagrange multiplier
A
for each episode do
for each time step t do
Select action a; = my(s;)
Execute joint action a; at state s;
Observe reward r;, cost c;, and next state sy
D — D U (S, a5, 71, Ct, St41)
end for
Sample batch B from D
0 «— 0 — aV.L(mp) by Equation 10
¢" «— ¢" — aV.Ly by Equation 13
¢¢ «— ¢¢ — aV.Ly, by Equation 14
Oc « 6c — ap.V Ly by Equation 15
A« A — ayV, L, by Equation 16
Clamp to ensure A > 0
Soft update actor and critic parameters:

‘9<—T(9+(1—T)9', ¢r<_T¢r+(l_T)¢;> ¢c<_f¢c+(1_7—)¢é

end for

5 Experiments

In this section, we outline our experimental details, including the environment configurations and explanation of
baseline algorithms.
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5.1 Environment Setup

We run our experiments on MAPPO-LCE and related baselines on the CityFlow environment [44], which is
a scalable and realistic traffic simulator due to its C++ backend. Additionally, it is compatible with several
multi-agent RL algorithms by integrating with the Gymnasium library [7]. From Wei et al. [42], there are three
publicly available datasets collected from real-world traffic data from Hangzhou, China (HZ); Jinan, China (JN);
and New York, USA (NY). Details of each environment are located in Table 1.

Each environment is defined by a fixed network file, which outlines the topology of the traffic network and
positions the traffic signals and roads as coordinates in space. There is a also a set traffic flow file, which defines
the route each vehicle will take. The difficulty with each environment is that the vehicles will randomly enter the
simulation, with varying distributions on where and when vehicles will appear. As such, a successful policy must
be able to adapt to a wide range of traffic flow distributions.

To evaluate the performance of each of the MARL algorithms, we use three evaluation metrics:

e Test Reward: The test reward is the same as the training reward: A¢Ry + A,,Ry,.

o Average Delay: The average delay is the average delay across all vehicles, which is the total travel time
minus the expected travel time for each vehicle. The expected travel time is the estimated time the vehicle
should finish its route if there were no traffic lights.

e Throughput: The throughput of the environment is the number of vehicles that complete their routes
before the episode ends.

HZ JN . NY
Number of Intersections 16 12 48

Number of Lanes 3 3 3
Total Number of Vehicles 2983 6295 2824
Time Steps (s) 3600 3600 3600

Table 1. Summary of Traffic Metrics for HZ, JN, and NY.

5.2 Baseline Methods

In this work, we compare our algorithm to three baseline MARL algorithms: Independent Proximal Policy
Optimization (IPPO) [13], Multi-Agent Proximal Policy Optimization (MAPPO) [43], and QTRAN [36]. This set of
algorithms allows us to test both on-policy algorithms (IPPO, MAPPO), and off-policy algorithms (QTRAN).

e IPPO [13]: IPPO treats each agent as its independent local RL agent to maximize local rewards. This
transforms the problem into || independent single-agent PPO rollouts.

e MAPPO [43]: MAPPO joins the actions of each agent into a single joint action vector, and each agent shares
an actor network and a critic network to update the policy.

e QTRAN [36]: QTRAN develops an unstructured value function factorization, which allows for more
generalizable decentralized execution of MARL problems.
All baseline algorithms were implemented or derived from the ePYMARL library [31]. For each algorithm, the total
reward at time step ¢ is r; — {¢;, where 7, and ¢, are the rewards and costs at time step ¢, and { is a hyperparameter
that trades off maximizing the reward and satisfying the constraints. All experiments were conducted on a single
RTX A5000 GPU.

ACM J. Auton. Transport. Syst.
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6 Results

In this section, we show the results of our algorithm on several environment configurations and perform ablation
studies to highlight the advantages of specific components of MAPPO-LCE.

6.1 Main Results
Averaged Train Reward vs. Time Step (s)
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Fig. 5. Plot of train reward on the over 500,000 timesteps for the MAPPO-LCE algorithm compared to baseline algorithms
across all environments and constraints. Plots are best viewed in color.

The results of the algorithms on the three environments are shown in Figure 10 and Table 2. In these figures,
we include theresults of each algorithm on the test reward function defined in Section 5.1.

As shown in Table 2, MAPPO-LCE outperforms all three comparison algorithms in every combination of
environment and constraint that was tested on. While some of the other algorithms come close to the performance
of MAPPO-LCE on specific setups (e.g. IPPO on HZ GreenSkip or QTRAN on NY PhaseSkip), taking the average
across all runs yields a 12.60% improvement over MAPPO, a 10.29% improvement over IPPO, and a 13.10%
improvement over QTRAN. Additionally, taking the average over the different constraints, MAPPO-LCE sees a
13.05% improvement with GreenTime, a 12.08% improvement with PhaseSkip, and a 10.87% improvement with
GreenSkip. The slight decay in improvement with PhaseSkip or GreenSkip is likely due to them over-constraining
the action space and too strongly encouraging the model to switch into unoptimal phases too often, but even
with those restrictions, the model still sees consistent improvements.

To demonstrate the improved sample efficiency of MAPPO-LCE compared to existing MARL algorithms, we
show the reward on the training environment over time in Figure 5. MAPPO-LCE demonstrates better sample
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efficiency in all environment and constraint combinations. Although in some environments MAPPO and IPPO
obtain higher rewards, this is at the cost of higher constraint violation rates, as shown in Figures 6, 7, and 8.
Interestingly, we note the opposite conclusion for QTRAN, which has a significant decrease in reward over
training but also decreased constraint violation rates. Unlike MAPPO and IPPO, QTRAN emphasizes reducing the
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Averaged Train Reward vs. Time Step (s)
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Environment Constraint MAPPO-LCE % Reward increase over comparison algorithms
MAPPO IPPO QTRAN

HZ GreenTime 13.86% 12.15% 10.61%
HZ PhaseSkip  12.88% 10.99% 8.74%
HZ GreenSkip 11.27% 2.55% 21.58%
JN GreenTime 14.22% 7.65% 21.74%
JN PhaseSkip  18.57% 15.03% 17.95%
JN GreenSkip  10.69% 7.73% 7.39%
NY GreenTime 10.4% 14.15% 12.62%
NY PhaseSkip  9.46% 9.52% 5.55%
NY GreenSkip  12.05% 12.83% 11.75%

Table 2. Comparison of the Test Reward metric between MAPPO-LCE and MARL baseline algorithms across all constraint
and environment combinations.

constraint values, but to a point that decreases the utility of the algorithm. These results show that MAPPO-LCE
is able to accurately manage balancing constraints and generating an effective MARL policy.
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Environment Constraint ~ MAPPO-LCE % Throughput increase over comparison algorithms

MAPPO IPPO QTRAN

HZ GreenTime 11.4% -5.93% -0.59%
HZ PhaseSkip  10.66% -5.44% 1.81%
HZ GreenSkip  11.88% -13.73% 34.89%
JN GreenTime 23.9% 10.45% 57.99%
JN PhaseSkip  29.77% 11.3% 29.86%
IN GreenSkip  15.42% 0.46% 11.85%
NY GreenTime 40.25% 7.43% 50.88%
NY PhaseSkip  78.22% 18.86% 44.02%
NY GreenSkip 74.15% 15.6% 63.91%

Table 3. Comparison of the Test Throughput metric between MAPPO-LCE and MARL baseline algorithms across all constraint
and environment combinations. Here, a higher metric indicates a better policy.

Environment Constraint MAPPO-LCE % Average Delay decrease
MAPPO IPPO QTRAN

HZ GreenTime 24.23% 8.56% 20.44%
HZ PhaseSkip 13.73% -2.97% 13.31%
HZ GreenSkip  10.83% -17.89% 24.72%
JN GreenTime 15.64% 8.19% 24.44%
IN PhaseSkip  19.27% 10.52% 19.78%
IN GreenSkip  10.6% 2.11% 8.51%
NY GreenTime 8.36% 3.94% 10.47%
NY PhaseSkip  13.41% 6.71% 11.52%
NY GreenSkip 11.65% 4.79% 11.94%

Table 4. Comparison of the Test Average Delay metric between MAPPO-LCE and MARL baseline algorithms across all
constraint and environment combinations. Note that a higher metric here is better due to an average delay decrease.

One additional notable result from Figure 10 is that our algorithm more consistently outperforms the comparison
algorithms as the complexity of the environment increases (we consider the NY environment the most complex, as
it contains 3-4 times more agents than the HZ and JN environments). This is because in harder environments with
more agents, policies are more heavily penalized for violating constraints. MAPPO-LCE’s ability to adaptively
handle constraints through a learnable Lagrange multipliers parameter enables it to more effectively balance
performance while adhering to constraints across all agents. This underscores the scalability of MAPPO-LCE,
which is essential for incorporating MARL policies in real-world settings.

A further analysis of the results can be done by looking at Tables 3 and 4, which show other important metrics
for traffic systems (Figures 11 and 12). MAPPO-LCE is sometimes outperformed in either or both of these metrics
by other algorithms - however, this only occurs in the HZ environment, which is the simplest. MAPPO-LCE still
outperforms all three comparison algorithms in general, however, it has much smaller margins of improvement
over IPPO. In terms of Throughput, it achieves a 32.85% improvement over MAPPO, a 32.73% improvement over
QTRAN, but only a 4.33% improvement over IPPO. In terms of Average Delay, it achieves a 14.19% improvement
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over MAPPO, a 16.13% improvement over QTRAN, but only a 2.66% improvement over IPPO. This is likely because
the traffic environment is largely independent, as while nearby traffic lights exhibit some dependencies due to
their close proximity, the influence of distant traffic lights is minimal and delayed. Thus, an independent policy
algorithm like IPPO can effectively capture localized decision-making dynamics while avoiding unnecessary
coordination. Additionally, De Witt et al. [13] shows that IPPO’s performance on fully cooperative tasks can
exceed other on-policy algorithms like MAPPO and Q-function factorization methods such as QMIX [33] and
QTRAN due to the importance of policy value clipping. However, IPPO still lags behind MAPPO-LCE due to the
Lagrange Cost Estimator’s ability to guide the policy in the implicitly constrained state and action space.

We also show the averaged individual test constraint values for each of the algorithms in Figures 13, 14,
and 15, where each constraint value of a particular constraint ranges from 0-1 representing the proportion of
lights/phases in violation of the constraint, with 0 being no violations and 1 being all possible violations. In almost
all test environment and constraint combinations, the value of the constraint violation is lowest for MAPPO-
LCE compared to the other baseline algorithms. Additionally, QTRAN and MAPPO’s performance decrease is
supported by the high constraint violations, especially for GreenSkip and PhaseSkip, as the number of constraint
violations increases significantly during training. However, while IPPO has much better performance in each
environment than QTRAN and MAPPO (but not as much as MAPPO-LCE), it still has large constraint violations,
especially concerning the GreenSkip constraint. Finally, we note that MAPPO-LCE’s improved performance
on the harder JN and NY datasets is supported by the lower constraint values for those two datasets, which
continues to demonstrate the algorithm’s scalability.

We also compare our algorithm to MAPPO-Lagrange [17] in Figure 9 on all environments and constraints.
Figure 9 clearly illustrates the divergent behaviors of the two algorithms, as MAPPO-LCE steadily improves
the training reward linearly, whereas MAPPO-Lagrange initially rises but begins to decline sharply after a few
thousand steps. In MAPPO-Lagrange, A is updated by the raw cost advantages calculated by Monte Carlo returns,
which introduces high variance and non-stationarity. Over time, this results in a policy that shifts from pursuing
reward to over-constraining, causing rapid performance degradation. By contrast, MAPPO-LCE maintains an
increasing reward curve due to its learned cost estimator, which converges much faster since it is decoupled from
the policy, which allows the policy to focus on updating V(;r and V;C more effectively instead of overoptimizing A.

6.2 Further Results

In Figures 11 and 12, we show the throughput and average delay results on the test set across timesteps for
the combinations of environments and constraints. Additionally, we provide experiment results for the setting
where all constraints are combined linearly to test each algorithm’s ability to handle multiple constraints in
Tables 5, 6, and 7. When evaluating this challenging setting where all constraints are combined, MAPPO-LCE
continues to achieve the highest overall reward, outperforming MAPPO, IPPO, and QTRAN by 6.43%, 0.22%,
and 4.13%, respectively (see Tables 5, 6, and 7). While the performance margins are smaller than in individual
constraint settings, this is expected due to the inherent complexity of optimizing conflicting objectives (GreenTime,
PhaseSkip, and GreenSkip simultaneously). Still, even in this more difficult scenario, MAPPO-LCE remains the
most robust algorithm, demonstrating its ability to learn balanced policies under multiple constraints. Interestingly,
IPPO occasionally achieves marginally better throughput (2.25%) and delay (0.58%) than MAPPO-LCE in this
setting, likely due to the increased optimization instability introduced by competing constraints. However, IPPO’s
gains come at the cost of higher constraint violations (see Figure 16). Figure 16 shows the summed constraint
values across the test runs on each environment. Notice that while MAPPO-LCE only attains a slightly lower
amount of constraint violations compared to IPPO on HZ (with IPPO trending lower at the end), it by far trends
the lowest on both of the more complex JN and NY datasets. This again highlights MAPPO-LCE’s ability to
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reliably enforce constraints without sacrificing quality reward optimization, as it maintains competitive or better
metrics on reward, throughput, and delay, while much more strongly minimizing constraint violations.

To further improve the effectiveness of MAPPO-LCE when there are multiple constraints, we can introduce
multiple Lagrange multipliers to measure each constraint individually instead of their aggregate. This should
result in a much more stabler cost estimator learning during training because the individual constraint dynamics
are easier to model, culminating in a policy that generalizes well to many constraints. However, introducing more
Lagrange multipliers necessitates more cost estimators, each with their separate optimizers, which could increase
the overhead of the algorithm. One potential way to circumvent this overhead is to use a shared backbone and
separate prediction heads for each constraint, but we leave this to future work.

Averaged Test Reward vs. Time Step (s)
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Fig. 10. Plot of test reward onthe over 500,000 timesteps for the MAPPO-LCE algorithm compared to baseline algorithms
across all environments and constraints. Plots are best viewed in color.

7  Future Work

For future work, one idea is to incorporate communication between agents, as such communication is already
implemented in practice via connected vehicle technology [1]. This would allow traffic lights to communicate
information such as the number of vehicles traveling from one intersection to another, the average travel time,
and other vital data that could help discover more optimal policies. This also can be easily represented with an
underlying Graph Neural Network (GNN), which means we can add message loss to the overall loss as both the
GNN and the neural networks in each algorithm use backpropagation. Additionally, following from Section 6.1,
excessive communication may be unnecessary and potentially prohibitive. Thus, leveraging pruning strategies
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Averaged Test Throughput vs. Time Step (s)
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Fig. 11. Plot of throughput on the test set over 500,000 timesteps for the MAPPO-LCE algorithm compared to baseline
algorithms across all environments and constraints. Plots are best viewed in color. Plots are best viewed in color.

Environment MAPPO-LCE % Test Reward increase over comparison algorithms

MAPPO IPPO QTRAN
HZ 10.31% 0.63% 6.76%
JN 3.5% 1.0% 0.1%
NY 5.48% -0.96% 5.53%

Table 5. Comparison of the Test Reward between MAPPO-LCE and MARL baseline algorithms using a sum of all constraints
for each traffic environment.

on the communication graph, such as [12, 14, 19, 28] would help avoid redundant communication that would
perversely affect agent learning.

Another idea is to expand our constraints. Formulating our current constraints as hard constraints and adding
additional soft constraints such as variance in throughput or waiting times could more closely represent real-
world environments while creating a model that values fairness and safety. In addition, we could add further
constraints by expanding the environment to include different types of vehicles, such as buses, ambulances, and
trams, to develop more generalizable traffic management strategies that accommodate diverse transportation
needs. Adding more significant constraints on their delay and waiting time could lead to more robust constraints
that better reflect real-life scenarios.
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Averaged Test Average Delay vs. Time Step (s)
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Fig. 12. Plot of average delay on the test set over 500,000 timesteps for the MAPPO-LCE algorithm compared to baseline
algorithms across all environments and constraints. Plots are best viewed in color.
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Fig. 13. Plot of test Green Time constraint values over all environments and algorithms. Plots are best viewed in color.

Expanding the ways our algorithm treats constraints and is able to incorporate them is also another route
for future expansion. For example, one aspect of our algorithm is that the constraint value is globalized and
applied to all agents equally, which means we only need one cost critic and cost estimator. However, this means
we cannot model each agent to correct any individual constraint violations. Future work serves to accurately
incorporate such fine-grained control over constraint violations without the significant overhead of training cost
estimators for each agent.

While ATSC is a partially observable Markov Game, a final idea is to give each agent a better idea of their
surroundings through expectation alignment. ELIGN [25] is a method for multi-agent expectation alignment that
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Environment ~MAPPO-LCE % Throughput increase over comparison algorithms

MAPPO IPPO QTRAN
HZ 17.75% -0.73% 0.37%
JN 7.25% 2.66% 1.39%
NY 36.93% -8.69% 24.84%

Table 6. Comparison of the Test Throughput metric between MAPPO-LCE and MARL baseline algorithms using a sum of all
constraints for each traffic environment.

Environment .- MAPPO-LCE % Average Delay decrease over comparison algorithms

MAPPO IPPO QTRAN
HZ 14.87% -0.99% 6.12%
JN 4.74% 1.41% 1.44%
NY 5.19% -2.17% 5.23%

Table 7. Comparison of the Test Average Delay metric between MAPPO-LCE and MARL baseline algorithms using a sum of
all constraints on each traffic environment.

aligns the shared expectations of an agent to its actual actions through an intrinsic reward. Predicting neighboring
agents’ actions in a second-order theory of mind approach allows for better coordination and can easily be added

ACM J. Auton. Transport. Syst.



A Constrained Multi-Agent Reinforcement Learning Approach to Autonomous Traffic Signal Control « 21

HZ NY N

2.2 " — MAPPO-LCE e
—— MAPPO %
— IPPO ;

— QTRAN

°

o

&
All Constraint Violations

All Constraint Violations
All Constraint Violations

—— MAPPO-LCE

13 -~ —— MAPPO
—— QTRAN

12— pro

13— QTRAN
— PPO
—— MAPPO-LCE
—— MAPPO

Iy
W
N

0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000 o 100000 200000 300000 400000 500000
Time Step (s) Time Step (s) Time Step (s)

Fig. 16. Plot of summed test constraint values over all environments and algorithms. Plots are best viewed in color.

to existing methods to find more optimal policies. In the ATSC problem, this may allow each agent to predict
swells or dips in traffic before they reach the intersection that the agent controls, further increasing its ability to
make realistic traffic policies.

8 Conclusion

In this paper, we focus on finding scalable algorithms for the Adaptive Traffic Signal Control problem in real-world
traffic environments. We propose a novel algorithm, MAPPO-LCE; for constrained multi-agent reinforcement
learning. We expand upon Multi-Agent Proximal Policy Optimization (MAPPO) by incorporating elements of
MAPPO-Lagrangian [17] and introducing a Lagrange Cost Estimator to accurately predict constraints even under
unstable conditions. While we only focused on three constraints, MAPPO-LCE can be used with any number of
general traffic constraints and can be extended to any constrained MARL problem. Our experimental results using
the CityFlow environment in multiple real-world settings show that MAPPO-LCE outperforms other baseline
methods with suitable constraints. Our findings indicate that constrained multi-agent reinforcement learning can
identify more optimal traffic policies for ATSC in real-world conditions and holds strong potential for real-world
deployment.

References

[1] Ghadeer Abdelkader, Khalid Elgazzar, and Alaa Khamis. 2021. Connected Vehicles: Technology Review, State of the Art, Challenges and
Opportunities. Sensors 21,22 (2021). doi:10.3390/s21227712

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained policy optimization. In International conference on
machine learning. PMLR, 22-31.

[3] Fahmy Adan, Yuxiang Feng, Panagiotis Angeloudis, Mohammed Quddus, and Washington Ochieng. 2023. Constrained Multi-Agent
Reinforcement Learning Policies for Cooperative Intersection Navigation and Traffic Compliance. In 2023 IEEE 26th International
Conference on Intelligent Transportation Systems (ITSC). 4079-4085. doi:10.1109/ITSC57777.2023.10422440

[4] Mohammad Aslani, Mohammad Saadi Mesgari, and Marco Wiering. 2017. Adaptive traffic signal control with actor-critic methods in
a real-world traffic network with different traffic disruption events. Transportation Research Part C: Emerging Technologies 85 (2017),
732-752. d0i:10.1016/j.trc.2017.09.020

[5] Tianshu Bao, Hua Wei, Junyi Ji, Daniel Work, and Taylor Thomas Johnson. 2024. Spatial-Temporal PDE Networks for Traffic Flow

Forecasting. In Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track: European Conference, ECML PKDD

2024, Vilnius, Lithuania, September 9—13, 2024, Proceedings, Part X (Vilnius, Lithuania). Springer-Verlag, Berlin, Heidelberg, 166-182.

d0i:10.1007/978-3-031-70381-2_11

Dimitri P. Bertsekas. 1996. Constrained Optimization and Lagrange multiplier methods. Athena Scientific.

G Brockman. 2016. OpenAl Gym. arXiv preprint arXiv:1606.01540 (2016).

Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui Li. 2020. Toward A Thousand Lights:

Decentralized Deep Reinforcement Learning for Large-Scale Traffic Signal Control. Proceedings of the AAAI Conference on Artificial

Intelligence 34, 04 (Apr. 2020), 3414-3421. doi:10.1609/aaai.v34i04.5744

l6
[7
[8

[t

ACM J. Auton. Transport. Syst.


https://doi.org/10.3390/s21227712
https://doi.org/10.1109/ITSC57777.2023.10422440
https://doi.org/10.1016/j.trc.2017.09.020
https://doi.org/10.1007/978-3-031-70381-2_11
https://doi.org/10.1609/aaai.v34i04.5744

22

(9]

(10]
(11]
(12]
(13]

(14]

(15]

16]

(17]

(18]

(19]
[20]
[21]

[22]

(23]
[24]
[25]
[26]
[27]
(28]

[29]

(30]

(31]

« A.Satheesh and K. Powell

Yue Chen, Changle Li, Wenwei Yue, Hehe Zhang, and Guoqiang Mao. 2021. Engineering A Large-Scale Traffic Signal Control: A
Multi-Agent Reinforcement Learning Approach. In IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). 1-6. doi:10.1109/INFOCOMWKSHPS51825.2021.9484451

Seung-Bae Cools, Carlos Gershenson, and Bart D’Hooghe. 2007. Self-Organizing Traffic Lights: A Realistic Simulation. Springer London,
41-50. doi:10.1007/978-1-84628-982-8_3

Eddie Curtis. 2017. EDC-1: Adaptive Signal Control Technology | Federal Highway Administration. https://www.thwa.dot.gov/
innovation/everydaycounts/edc-1/asct.cfm

Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Michael Rabbat, and Joelle Pineau. 2020. TarMAC: Targeted
Multi-Agent Communication. arXiv:1810.11187 [cs.LG] https://arxiv.org/abs/1810.11187

Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS Torr, Mingfei Sun, and Shimon Whiteson.
2020. Is independent learning all you need in the starcraft multi-agent challenge? arXiv preprint arXiv:2011.09533 (2020).

Shifei Ding, Wei Du, Ling Ding, Lili Guo, and Jian Zhang. 2024. Learning Efficient and Robust Multi-Agent Communication via Graph
Information Bottleneck. Proceedings of the AAAI Conference on Artificial Intelligence 38, 16 (Mar. 2024), 17346-17353. doi:10.1609/aaai.
v38116.29682

Mohamed Essa and Tarek Sayed. 2020. Self-learning adaptive traffic signal control for real-time safety optimization. Accident Analysis &
Prevention 146 (2020), 105713. doi:10.1016/j.aap.2020.105713

Hankang Gu, Shangbo Wang, Xiaoguang Ma, Dongyao Jia, Guogiang Mao, Eng Gee Lim, and Cheuk Pong Ryan Wong. 2024. Large-Scale
Traffic Signal Control Using Constrained Network Partition and Adaptive Deep Reinforcement Learning. Trans. Intell. Transport. Sys. 25,
7 (April 2024), 7619-7632. doi:10.1109/TITS.2024.3352446

Shangding Gu, Jakub Grudzien Kuba, Munning Wen, Ruiqing Chen, Ziyan Wang, Zheng Tian, Jun Wang, Alois Knoll, and Yaodong
Yang. 2022. Multi-Agent Constrained Policy Optimisation. arXiv:2110.02793 [cs.Al] https://arxiv.org/abs/2110.02793

Ammar Haydari, Vaneet Aggarwal, Michael Zhang, and Chen-Nee Chuah. 2024. Constrained Reinforcement Learning for Fair and
Environmentally Efficient Traffic Signal Controllers. ACM J. Auton. Transport. Syst. 2, 1, Article 2 (Sept. 2024), 19 pages. doi:10.1145/
3676169

Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. 2024. Learning Multi-Agent Communication from Graph Modeling Perspective.
arXiv:2405.08550 [cs.LG] https://arxiv.org/abs/2405.08550

Xingshuai Huang, Di Wu, and Benoit Boulet. 2023. Fairness-Aware Model-Based Multi-Agent Reinforcement Learning for Traffic Signal
Control. https://openreview.net/forum?id=sy0PqUr2fq9

Jiechuan Jiang and Zongqing Lu. 2019. Learning fairness in multi-agent systems. Advances in Neural Information Processing Systems 32
(2019).

Qize Jiang, Minhao Qin, Shengmin Shi, Weiwei Sun, and Baihua Zheng. 2022. Multi-Agent Reinforcement Learning for Traffic
Signal Control through Universal Communication Method. In Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, [JCAI 2022, Vienna, Austria, 23-29 July 2022, Luc De Raedt (Ed.). ijcai.org, 3854-3860. doi:10.24963/ijcai.2022/535

Michael L. Littman. 2001. Friend-or-Foe Q-learning in General-Sum Games. In Proceedings of the Eighteenth International Conference on
Machine Learning (ICML °01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 322-328.

Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Basar, and Lior Horesh. 2021. Decentralized policy gradient descent ascent for safe
multi-agent reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence, Vol. 35. 8767-8775.

Zixian Ma, Rose Wang, Fei-Fei Li, Michael Bernstein, and Ranjay Krishna. 2022. Elign: Expectation alignment as a multi-agent intrinsic
reward. Advances in Neural Information Processing Systems 35 (2022), 8304-8317.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013.
Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602 [cs.LG] https://arxiv.org/abs/1312.5602

Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. 2017. Traffic Light Control Using Deep Policy-Gradient and Value-Function
Based Reinforcement Learning. arXiv:1704.08883 [cs.LG] https://arxiv.org/abs/1704.08883

Yaru Niu, Rohan Paleja, and Matthew Gombolay. 2021. Multi-Agent Graph-Attention Communication and Teaming. In Proceedings of
the 20th International Conference on Autonomous Agents and MultiAgent Systems. 964-973.

Afshin Oroojlooy, Mohammadreza Nazari, Davood Hajinezhad, and Jorge Silva. 2020. AttendLight: Universal Attention-Based Rein-
forcement Learning Model for Traffic Signal Control. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 4079-4090. https://proceedings.neurips.cc/paper_files/paper/
2020/file/29¢48b79ae6fc68e9b6480b677453586-Paper.pdf

Hali Pang and Weilong Gao. 2019. Deep Deterministic Policy Gradient for Traffic Signal Control of Single Intersection. In 2019 Chinese
Control And Decision Conference (CCDC). 5861-5866. doi:10.1109/CCDC.2019.8832406

Georgios Papoudakis, Filippos Christianos, Lukas Schifer, and Stefano V. Albrecht. 2021. Benchmarking Multi-Agent Deep Reinforcement
Learning Algorithms in Cooperative Tasks. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks
(NeurlIPS). http://arxiv.org/abs/2006.07869

ACM J. Auton. Transport. Syst.


https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484451
https://doi.org/10.1007/978-1-84628-982-8_3
https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/asct.cfm
https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/asct.cfm
https://arxiv.org/abs/1810.11187
https://arxiv.org/abs/1810.11187
https://doi.org/10.1609/aaai.v38i16.29682
https://doi.org/10.1609/aaai.v38i16.29682
https://doi.org/10.1016/j.aap.2020.105713
https://doi.org/10.1109/TITS.2024.3352446
https://arxiv.org/abs/2110.02793
https://arxiv.org/abs/2110.02793
https://doi.org/10.1145/3676169
https://doi.org/10.1145/3676169
https://arxiv.org/abs/2405.08550
https://arxiv.org/abs/2405.08550
https://openreview.net/forum?id=sy0PqUr2fq9
https://doi.org/10.24963/ijcai.2022/535
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1704.08883
https://arxiv.org/abs/1704.08883
https://proceedings.neurips.cc/paper_files/paper/2020/file/29e48b79ae6fc68e9b6480b677453586-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/29e48b79ae6fc68e9b6480b677453586-Paper.pdf
https://doi.org/10.1109/CCDC.2019.8832406
http://arxiv.org/abs/2006.07869

(32]

(33]

(34]

(35]

(36]
(37]
(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45

=

(46

=

[47

—

(48]

A

Al

A Constrained Multi-Agent Reinforcement Learning Approach to Autonomous Traffic Signal Control « 23

Majid Raeis and Alberto Leon-Garcia. 2021. A Deep Reinforcement Learning Approach for Fair Traffic Signal Control. In 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC) (Indianapolis, IN, USA). IEEE Press, 2512-2518. doi:10.1109/ITSC48978.
2021.9564847

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster, and Shimon Whiteson. 2018.
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning. arXiv:1803.11485 [cs.LG] https:
//arxiv.org/abs/1803.11485

Stefano Giovanni Rizzo, Giovanna Vantini, and Sanjay Chawla. 2019. Reinforcement Learning with Explainability for Traffic Signal
Control. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC). 3567-3572. doi:10.1109/ITSC.2019.8917519

Umer Siddique, Paul Weng, and Matthieu Zimmer. 2020. Learning Fair Policies in Multi-Objective (Deep) Reinforcement Learning
with Average and Discounted Rewards. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 8905-8915. https://proceedings.mlr.press/v119/siddique20a.html
Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. 2019. Qtran: Learning to factorize with transformation
for cooperative multi-agent reinforcement learning. In International conference on machine learning. PMLR, 5887-5896.

Daniel Tabas, Ahmed S Zamzam, and Baosen Zhang. 2023. Interpreting Primal-Dual Algorithms for Constrained Multiagent Reinforce-
ment Learning. In Learning for Dynamics and Control Conference. PMLR, 1205-1217.

Shijie Wang and Shangbo Wang. 2023. A Novel Multi-Agent Deep RL Approach for Traffic Signal Control. arXiv:2306.02684 [cs.AI]
https://arxiv.org/abs/2306.02684

Tianyu Wang, Teng Liang, Jun Li, Weibin Zhang, Yiji Zhang, and Yan Lin. 2020. Adaptive Traffic Signal Control Using Distributed
MARL and Federated Learning. In 2020 IEEE 20th International Conference on Communication Technology (ICCT). 1242-1248. doi:10.1109/
ICCT50939.2020.9295660

Ziyan Wang, Meng Fang, Tristan Tomilin, Fei Fang, and Yali Du. 2024. Safe Multi-agent Reinforcement Learning with Natural Language
Constraints. arXiv preprint arXiv:2405.20018 (2024).

Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li. 2019. PressLight: Learning Max Pressure
Control to Coordinate Traffic Signals in Arterial Network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (Anchorage, AK, USA) (KDD °19). Association for Computing Machinery, New York, NY, USA, 1290-1298.
doi:10.1145/3292500.3330949

Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang, Yanmin Zhu, Kai Xu, and Zhenhui Li.
2019. CoLight: Learning Network-level Cooperation for Traffic Signal Control. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management (Beijing, China) (CIKM °19). Association for Computing Machinery, New York, NY, USA,
1913-1922. doi:10.1145/3357384.3357902

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. 2022. The surprising effectiveness of ppo
in cooperative multi-agent games. Advances in Neural Information Processing Systems 35 (2022), 24611-24624.

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong Yu, Haiming Jin, and Zhenhui Li.
2019. Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario. In The world wide web conference.
3620-3624.

Yuli Zhang, Shangbo Wang, Xiaoguang Ma, Wenwei Yue, and Ruiyuan Jiang. 2023. Large-Scale Traffic Signal Control by a Nash Deep
Q-network Approach. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). 4584-4591. doi:10.1109/
ITSC57777.2023.10422534

Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai Xu, and Zhenhui Li. 2019. Learning Phase
Competition for Traffic Signal Control. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management
(Beijing, China) (CIKM 19). Association for Computing Machinery, New York, NY, USA, 1963-1972. doi:10.1145/3357384.3357900
Guanjie Zheng, Xinshi Zang, Nan Xu, Hua Wei, Zhengyao Yu, Vikash Gayah, Kai Xu, and Zhenhui Li. 2019. Diagnosing Reinforcement
Learning for Traffic Signal Control. arXiv:1905.04716 [cs.LG] https://arxiv.org/abs/1905.04716

Wei Zhou, Dong Chen, Jun Yan, Zhaojian Li, Huilin Yin, and Wanchen Ge. 2022. Multi-agent reinforcement learning for cooperative lane
changing of connected and autonomous vehicles in mixed traffic. Autonomous Intelligent Systems 2, 1 (March 2022). doi:10.1007/s43684-
022-00023-5

Hyperparameter Selection

Algorithm Hyperparameters

We use the same hyperparameters since all of our baseline algorithms are adapted from the ePYMARL library
[31]. We provide a full list of algorithmic environment hyperparameters in Table 8. For the constraint trade-off
hyperparameter {, we set it to 0.2 for all constraints. We model the cost estimator as a Multi-Layer Perceptron
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(MLP), with two hidden layers and a hidden layer size of 128. We also use an Adam optimizer with a learning
rate of 107 to train the cost estimator. We set the cost limit for all experiments to 0.

A.2  Environment Hyperparameters

Each time step in the environment is composed of T, inner steps to update the environment, which we set to 10.
Thus, simulating for 500,000 steps is the same as simulating approximately 1400 episodes. After the policy selects
an action, each inner step simulates 1 second of the environment. To simulate yellow lights without actually
implementing them directly, each traffic light instead turns off all lights that would be switched between phases
for T, time before fully turning them red or green. We set T, to 5 time steps, which is equivalent to 5 seconds.
Each constraint also has a hyperparameter that controls its severity. For constraint thresholds, we set Gax time
to 40, Prax skips t0 16, and Gpax skips to 4.

Table 8. Hyperparameter Comparison of RL Algorithms

Hyperparameter IPPO MAPPO QTRAN MAPPO-LCE
Epsilon Start 1.0 1.0 1.0 1.0
Epsilon Finish 0.05 0.05 0.05 0.05
Epsilon Anneal Time 500000 500000 500000 500000
Learning Rate (Ir) 0.00005  0.0005 0.0005 0.00005
Gamma 0.985 0.985 0.985 0.985
Hidden Dim 128 128 32 128
Grad Norm Clip 10 10 5 10
Critic Coef 0.5 0.5 - 0.5
Entropy Coef 0 0 - 0
Reg Coef 0.01 0.01 - 0.01
GAE Lambda 0.95 0.95 - 0.95
Mini Epochs 2 2 1 2
Eps Clip 0.15 0.15 - 0.15
Target Update Interval = 200 200 200 200
Mixing Embed Dim - - 64 -
Opt Loss - - 1 -
NoptLoss - - 0.1 -
Lambda Init - - - 0.01
Lambda LR - - - 0.0001
Batch Size 8 8 8 8
Buffer Size 8 8 8 8
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