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ABSTRACT

A central challenge in reinforcement learning is that policies trained in controlled environments often
fail under distribution shifts at deployment into real-world environments. Distributionally Robust
Reinforcement Learning (DRRL) addresses this by optimizing for worst-case performance within
an uncertainty set defined by a robustness budget ϵ. However, fixing ϵ results in a tradeoff between
performance and robustness: small values yield high nominal performance but weak robustness, while
large values can result in instability and overly conservative policies. We propose Distributionally
Robust Self-Paced Curriculum Reinforcement Learning (DR-SPCRL), a method that overcomes this
limitation by treating ϵ as a continuous curriculum. DR-SPCRL adaptively schedules the robustness
budget according to the agent’s progress, enabling a balance between nominal and robust performance.
Empirical results across multiple environments demonstrate that DR-SPCRL not only stabilizes
training but also achieves a superior robustness–performance trade-off, yielding an average 11.8%
increase in episodic return under varying perturbations compared to fixed or heuristic scheduling
strategies, and achieving approximately 1.9× the performance of the corresponding nominal RL
algorithms.

1 Introduction

Curriculum Reinforcement Learning (CRL) has emerged as a powerful paradigm for accelerating and stabilizing the
training of reinforcement learning (RL) agents. By structuring training from simpler to progressively harder tasks, CRL
allows agents to acquire complex skills more reliably and to generalize better to unseen situations [1, 2]. Instead of
exposing an agent to the full complexity of a target task from the beginning, CRL gradually introduces a series of
intermediate tasks tailored to the agent’s current level of proficiency.

While CRL improves learning efficiency and stability, it primarily focuses on generating and learning semantic or goal-
specific tasks and, as a result, cannot provide guarantees on performance across arbitrary environment parameterizations.
In many real-world applications, policies must contend with unmodeled dynamics, sensor noise, and physical variations
between training and deployment, known as the sim-to-real problem. These sources of uncertainty can cause dramatic
performance degradation even for policies that performed well during training. To address this, Distributionally Robust
Reinforcement Learning (DRRL) [3] provides a principled framework for learning policies that maximize worst-case
returns over a prescribed uncertainty set. The resulting policies are explicitly designed to be resilient to model mismatch,
in contrast to standard RL approaches that optimize performance only in the nominal environment.

In DRRL, the size of the uncertainty set is determined by a robustness budget ϵ, which specifies the allowable deviation
between the nominal model and its perturbations. As illustrated in Figure 1, small values of ϵ yield high nominal
performance but weak robustness, whereas large values guarantee robustness but lead to overly pessimistic value
estimates that can slow or destabilize learning. Thus, training policies with a large fixed ϵ forces the agent to optimize
against a severely depressed value function, while training with small ϵ produces policies that are insufficiently robust
at deployment. This inherent trade-off motivates the use of curriculum learning in DRRL, where we treat the robustness
budget ϵ as the context of a curriculum: beginning with manageable uncertainty set and gradually expanding it as the
agent’s performance and robustness increases.
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Figure 1: Robustness evaluation of DRPPO under action, observation, and environment perturbations for the Hopper
environment. Each panel shows episodic returns as a function of noise levels. Policies trained with smaller fixed
robustness budgets (ϵ) fail to handle perturbations effectively, while larger ϵ values produce overly conservative behavior,
leading to suboptimal policies. This highlights the tradeoff between robustness and nominal performance for fixed ϵ
settings.

1.1 Challenges and Contributions

The main challenge of training an effective DRRL policy is to automatically schedule the robustness budget ϵ so
that an agent can efficiently learn a policy guaranteed to maintain performance under any environment uncertainty.
Designing such a schedule is non-trivial: the task difficulty parameterized by ϵ lacks an intuitive or direct link to
semantic properties of the RL task, and poor scheduling either undermines robustness or slows and destabilizes training.
This motivates an approach in which the agent itself determines how quickly to expand the uncertainty set based on its
learning progress and robustness level.

To address this problem, we introduce Distributionally Robust Self-Paced Curriculum Reinforcement Learning
(DR-SPCRL), a novel algorithm that automates curriculum generation for ϵ. We derive DR-SPCRL by instantiating
a general curriculum learning framework for the specific mathematical structure of DRRL, with the novelty that the
curriculum update is guided directly by the agent’s current robustness to environmental uncertainty, enabling it to
adaptively balance robustness and performance compared to heuristic-based approaches. By applying the Envelope
Theorem to the primal DRRL problem, we formally show that the gradient of the robust value function with respect to
the curriculum parameter ϵ is equal to the negative of the optimal dual variable, β∗ [4]. This dual variable represents
the marginal cost of robustness, a theoretically grounded measure of how much the agent is struggling at its current
robustness level. DR-SPCRL leverages this signal to create an adaptive update rule that automatically balances the
agent’s competence with the need to progress the curriculum.

In summary, our main contributions are:

• We are the first to motivate and formalize the scheduling of the robustness budget ϵ in DRRL as a continuous,
contextual curriculum learning problem to improve the stability of training DRRL policies.

• We introduce DR-SPCRL, a novel automated curriculum algorithm that leverages the dual structure of
distributionally robust reinforcement learning (DRRL) to adaptively adjust the robustness budget ϵ based on
the agent’s learning and robustness progress.

• Empirical evaluations across diverse continuous control environments show that DR-SPCRL stabilizes training
and achieves superior robustness–performance trade-offs, yielding an average 11.8% improvement in episodic
returns compared to both non-robust baselines and DRRL agents trained with fixed or heuristic robustness
schedules, while also achieving approximately 1.9× the performance of the corresponding nominal RL
algorithms.

2 Related Work

2.1 Curriculum Reinforcement Learning

Curriculum Learning [1] enhances generalization by structuring agent training from simpler to more complex tasks.
Early approaches relied on manually ordered tasks or easily parameterized task sets [2, 5]. Modern methods automate
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this process, such as Self-Paced Contextual RL [6], which formulates the problem as an active optimization of an
intermediate context distribution, balancing local reward maximization with a KL-divergence penalty to ensure progress
towards a target distribution. This idea is grounded in information-theoretic frameworks like contextual relative entropy
policy search. Other automated methods include using intrinsic motivation [7], generative models for environment
[8, 9], and self-play [10]. However, the key limitation of these existing CRL methods is that they are specific to a narrow
class of contexts, such as predefined semantic tasks or goal-conditioned settings, and offer no systematic mechanism or
guarantees for handling broader or adversarial environmental variations. This motivates our work on Distributionally
Robust Self-Paced Curriculum Reinforcement Learning (DR-SPCRL), which explicitly integrates robustness into the
curriculum design so that the resulting policies maintain strong performance even under significant deviations from the
training conditions.

2.2 Distributionally Robust Reinforcement Learning

Distributionally Robust Optimization [11, 12] refers to optimization where underlying parameters are unknown. For
Reinforcement Learning [3, 13], this is formalized as a robust Markov Decision Process [14, 15]. Existing literature
on DRRL focuses on extending RL methods such as Q-learning [13, 16], value iteration [17], and policy gradient
methods [18, 19, 20, 21]. Additional research has focused on the model-based [22] and offline setting [23, 24, 25].
However, DRRL is largely limited to the tabular setting [17, 13, 26]. Recently, some works [27] have extended DRRL
to the continuous setting by leveraging the closed form of the KL divergence uncertainty set. However, the primary
pitfall of existing deep DRRL methods is their reliance on a fixed robustness budget ϵ. These methods lack an adaptive
mechanism to manage this difficulty parameter during training, which can lead to the instability or overly conservative
policies that our work aims to resolve.

3 Problem Formulation

We formalize the Distributionally Robust Self-Paced Curriculum Reinforcement Learning (DR-SPCRL) problem by
starting from the standard Markov Decision Process (MDP)

M = (S,A, γ, P, r)

where S is the state space, A is the action space, γ is the discount factor, P : S ×A → S is the transition kernel, and
r : S ×A → R is the reward function. A policy πθ seeks to maximize the expected return

J(πθ, P ) = Eπθ,P

[ ∞∑
t=0

γtr(st, at)
]
.

In many applications the true transition kernel is not exactly known; instead, we assume it lies in an uncertainty set
P(ϵ) around a nominal model P0:

P(ϵ) = {P : S ×A → S |D(P (·|s, a), P0(·|s, a)) ≤ ϵ, ∀s, a} (1)

where D is a divergence measure and ϵ ≥ 0 is the robustness budget. The resulting robust MDP objective is

max
θ

Vrobust(πθ; ϵ), Vrobust(πθ; ϵ) = inf
P∈P(ϵ)

J(πθ, P ).

To model multiple robustness levels within a single framework, we view the robustness budget as a context variable
c ∈ C with

C = [0, ϵbudget], c ≡ ϵ.

Each context specifies a different uncertainty set P(c) and thus a distinct robust control problem, yielding a contextual
robust MDP. Rather than training directly at the most challenging context ϵmax, distributionally robust curriculum
reinforcement learning organizes learning through a curriculum of increasing budgets

E = (ϵ1, ϵ2, . . . , ϵT ), 0 ≤ ϵt ≤ ϵbudget, ϵt+1 ≥ ϵt,

where each ϵt+1 represents a more difficult level of uncertainty than ϵt. At stage t, the agent solves the robust MDP
corresponding to ϵt:

max
θt

Vrobust(πθt ; ϵt), t = 1, . . . , T,

and the budget is increased only when sufficient progress is achieved. Our objective is therefore to jointly learn a
sequence of policies {πθt}Tt=1 and the curriculum E so that the final policy attains strong robust performance at the
target uncertainty level ϵbudget.
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4 Method

In this section, we detail our proposed algorithm. We begin by establishing how DRRL can be used in the deep
reinforcement learning setting. We then formally derive our curriculum reinforcement learning algorithm, which we
term Distributionally Robust Self-Paced Curriculum Reinforcement Learning (DR-SPCRL), by starting with general
curriculum reinforcement learning framework and integrating the distributionally robust formulation.

4.1 Deep Distributionally Robust RL

We consider a DRRL setting where the transition model P is unknown but belongs to a KL-divergence ball P(ϵ) of
radius ϵ around a nominal model P0. The goal is to find a policy πθ with parameters θ that maximizes the robust value
function, Vrobust, defined by the primal problem:

V = inf
P∈{P |DKL(P,P0)≤ϵ}

Eπθ,P

[ ∞∑
t=0

γtr(st, at)

]
Solving this infimum problem is generally intractable. However, as strong duality holds for the KL-divergence
uncertainty set, this problem can be equivalently reformulated into its dual, which involves a maximization over the
dual variable β ≥ 0

Vrobust(s, a) = sup
β≥0

(
−β log

(
Es′∼P0(·|s,a)

[
exp

(
−V (s′)

β

)])
− βϵ

)
(2)

In our work, we approximate this optimal dual variable, β∗(s, a), using a neural network βϕ(s, a). The agent’s policy
is then trained using any RL algorithm to estimate the value function, but with policy updates using the robust value
function.

4.2 The DR-SPCRL Algorithm

We derive our curriculum generation method from the inference-based self-paced learning framework of [6], which
poses curriculum generation as a joint optimization problem over the policy parameters θ and curriculum parameters ν:

max
θ,ν

Ep(c|ν)[J(θ, c)]− αDKL(p(c|ν) ∥µ(c))

s.t. DKL(p(c|ν) ∥ p(c|ν0)) ≤ η
(3)

Here, J(θ, c) is the performance on task c, µ(c) is the target task distribution, α is a pacing parameter controlling
exploration speed, and η is a trust region limiting large jumps between contexts. We can now frame our distributionally
robust RL problem as a self-paced curriculum learning problem. We can define J(θ, c) as the robust value function
Vrobust with c = ϵ, the curriculum itself as a probability distribution over ϵ and p(ϵ|ν), and the target distribution µ(c) as
a Dirac delta distribution at the target δ(ϵ− ϵbudget). Our goal is to derive a practical update rule for a single, continuous
ϵ. We fix the policy θ and focus on the curriculum update step. The objective is to find the new curriculum distribution
p(ϵ|ν) that solves

max
p(ϵ|ν)

∫
p(ϵ|ν)Vrobustdϵ− αD(p(ϵ|ν) ∥ µ(ϵ)) (4)

Because our target distribution µ(ϵ) is a single point (δ(ϵ− ϵbudget)), the KL-divergence term will strongly incentivize
the optimal curriculum p(ϵ|ν) to also concentrate its mass around a single point. For our practical implementation,
we therefore model the curriculum as a single-point estimate p(ϵ|ν) = δ(ϵ − ν), where ν is the current value of the
curriculum’s ϵ.

With this model, the expectation Ep(ϵ|ν)[Vrobust] simplifies to Vrobust(θ; ν). Additionally, the KL-divergence terms are
not suitable for the Dirac delta functions, so we use the Euclidean distance between ϵ and ϵbudget as an approximation.
This transforms the distributional optimization problem into an equivalent optimization over the point-wise curriculum
parameter. Thus, our curriculum learning optimization problem reduces to maximizing a constrained scalar objective
using the current uncertainty radius:

max
ϵ

Vrobust(θ; ϵ)− α(ϵ− ϵbudget)
2

s.t. (ϵ− ϵt)
2 ≤ η

(5)
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To solve this constrained optimization problem, we form its Lagrangian. Let f(ϵ) = Vrobust(θ; ϵ)− α(ϵ− ϵbudget)
2 be

our objective. The Lagrangian for the curriculum optimization is:

Lcurr(ϵ, λ) = f(ϵ)− λ
(
(ϵ− ϵt)

2 − η
)

(6)

Here, λ ≥ 0 is the Lagrange multiplier for the trust-region constraint. Setting the derivative of Lcurr with respect to ϵ to
zero gives the optimality condition:

∇ϵLcurr = ∇ϵf(ϵ)− 2λ(ϵ− ϵt) = 0 (7)

However, the primary challenge in computing ∇ϵLcurr is that Vrobust is defined implicitly via an inner minimization
over P . Directly differentiating through P ∗(ϵ) (the worst case transition kernel for the current policy) would require
backpropagating through a very high-dimensional constrained optimization problem. To circumvent this, we can
leverage the Envelope Theorem [4], which states that any optimization problem of the form

g(ϵ) = max
x∈X

f(x, ϵ)

then under mild regularity conditions:

∇ϵg(ϵ) =
∂f(x, ϵ)

∂ϵ

∣∣∣∣
x=x∗(ϵ)

The Lagrangian for Vrobust is L(P, β) = V + β(DKL(P ∥ P0)− ϵ) and the partial derivative of the Lagrangian with
respect to ϵ is −β. By the Envelope Theorem, the derivative of the value function Vrobust is the partial derivative of the
Lagrangian evaluated at the worst case transition kernel (P ∗) and associated worst case dual variable (β∗):

∇ϵVrobust =
∂L(P, β)

∂ϵ

∣∣∣∣
P=P∗,β=β∗

= −β∗(ϵ) (8)

This formally shows that the gradient of the robust value function is the negative of the optimal dual variable β∗, which
represents the marginal cost of robustness. Substituting this into the optimality condition, we have:

−β∗(ϵ)− 2α(ϵ− ϵbudget)− 2λ(ϵ− ϵt) = 0 (9)

Solving for ϵ and substituting ϵ = ϵt+1 yields an implicit equation for the optimal next step. To create a practical,
explicit update rule, we make a first-order approximation by evaluating the gradient at ϵt and treating the step-size
term 1

2(α+λ) as an effective curriculum learning rate, denoted λcurr. This learning rate now implicitly enforces the
trust-region constraint η, leading to the final update rule:

ϵt+1 = ϵt − λcurr (β
∗(ϵt) + 2α(ϵt − ϵbudget)) (10)

4.3 Practical Implementation

In practice, we do not have access to β∗, so we use βϕ as an approximation with ϕ as a neural network updated to
maximize Vrobust. Our final algorithm is RL-algorithm agnostic and proceeds in a block-coordinate ascent fashion,
similar to [6]. At each timestep, we compute the the current curriculum budget ϵt and the policy πθ and βϕ are updated.
This step is RL algorithm-agnostic, and any algorithm that learns the value function or can be used to approximate
the value function can be made robust by using Vrobust in the update and updating ϕ in the direction that maximizes
Vrobust. We then compute the curriculum gradient with respect to ϵt and transition to ϵt+1. We give the full algorithm in
Algorithm 1.

5 Experiments

We conduct a comprehensive set of experiments to empirically validate our proposed Distributionally Robust Self-
Paced Curriculum Reinforcement Learning (DR-SPCRL) algorithm. Our evaluation targets three key hypotheses: (1)
DR-SPCRL produces policies with greater robustness than standard non-robust baselines; (2) its adaptive curriculum
yields more stable training and better final performance than robust training with a fixed or heuristic schedule; and (3)
the method is general-purpose, providing benefits across diverse algorithms and domains. To demonstrate this, we
integrate DR-SPCRL with three state-of-the-art deep RL algorithms representing distinct paradigms: Proximal Policy
Optimization (PPO) [28], Soft Actor-Critic [29] (SAC), and Deep Deterministic Policy Gradients (DDPG) [30].

We evaluate our algorithm on the Hopper, Humanoid, Half-Cheetah, and Walker2d continuous control environments.
We assess policy robustness using two primary metrics: nominal performance, which is the average episodic return
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Algorithm 1 Distributionally Robust Self-Paced Curriculum Reinforcement Learning (DR-SPCRL)
1: Require: discount factor γ, initial budget ϵstart, final budget ϵbudget, pacing parameter α, curriculum learning rate

λcurr, number of iterations T , rollout steps per iteration N , and number of critic updates K.
2: Initialize policy πθ, dual model βϕ, curriculum ϵt ← ϵstart, and experience buffer D.
3: for t = 1 to T do
4: Collect N steps of experience (s, a, r, s′) using πθ; store in D.
5: for k = 1 to K do
6: Sample minibatch {(sj , aj , rj , s′j)} from D.
7: Compute dual loss L(ϕ) = −Vrobust(θ; ϵt) from Eq. (2).
8: Update βϕ via gradient descent on L(ϕ).
9: end for

10: Compute robust value and advantages using updated βϕ.
11: Update policy parameters θ via RL algorithm with robust value and advantage functions.
12: Estimate β∗(ϵt) ≈ E(s,a)∼B[βϕ(s, a)] from minibatch B.
13: Compute regularization gradient greg = 2α(ϵt − ϵbudget) from Eq. (7).
14: Update curriculum using Eq. (10): ϵt+1 ← ϵt − λcurr(βϕ + greg).
15: Project ϵt+1 into [0, ϵbudget].
16: end for
17: return final policy πθ.

in the unperturbed training environment, and robust performance, which is the average episodic return under a suite
of held-out perturbations not encountered during training. This evaluation suite is designed to simulate a range of
real-world uncertainties and is composed of three distinct and formally defined perturbation types:

First, to simulate sensor noise, we apply observation noise. Formally, at each timestep t, the agent receives a perturbed
state observation s′t instead of the true state st. The perturbed state is given by:

s′t = st + ηt, ηt ∼ N (0, σ2
obsI)

Here, ηt is a noise vector sampled from a zero-mean Gaussian distribution with a fixed standard deviation σobs, applied
independently to each dimension of the state vector.

Second, to simulate actuator imprecision or faults, we apply action noise. Specifically, the action at selected by the
policy is replaced by a perturbed action a′t before being executed in the environment. This replacement occurs with a
fixed probability pact:

a′t =

{
arand ∼ U(A) pact

πt(st) 1− pact

Third, to simulate sim-to-real gaps or systemic changes in the environment itself, we apply environment noise. This is
achieved by modifying the underlying physical parameters of the MuJoCo simulation at the start of each evaluation
episode. Let ξ0 be the vector of nominal physics parameters (e.g., body masses, friction coefficients, joint damping).
For each evaluation episode, we sample a new parameter vector ξ′ where each component ξ′i is drawn from a uniform
distribution centered around its nominal value:

ξ′i = U(1− δenv, 1 + δenv)ξ
′
0

where δenv defines the percentage range of the perturbation. The episode is then run entirely within the simulator
configured with these perturbed physics ξ′. For our experiments, we only perturb the body mass, the damping force,
and the friction of the MuJoCo environments.

We compare our DRSPCRL algorithm to five curriculum reinforcement learning algorithms where we set the context as
the epsilon radius of the uncertainty set:

• Vanilla The standard, non-robust RL algorithm, which corresponds to training with ϵ = 0. This serves as our
baseline for nominal performance and demonstrates the fragility of standard policies.

• Fixed Budget Distributionally Robust RL trained with a fixed, high robustness budget throughout training.
This baseline is designed to highlight the instability or over-conservatism that arises from training without a
curriculum.

• Linear Schedule A baseline that employs a handcrafted curriculum where the robustness budget ϵ is linearly
annealed from 0 to the final target budget over the course of the training run.
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• ACCEL An adaptation of the regret-based curriculum generation method, ACCEL [31]. We maintain a replay
buffer of ϵ values, where the regret score of an ϵ is defined by the mean dual variable β∗. The curriculum
progresses by sampling and editing high-regret ϵ values from this buffer.

• SPACE An adaptation of the Self-Paced Contextual Evaluation (SPACE) algorithm [32]. This method employs
a heuristic where the curriculum budget ϵ is increased only when the agent’s robust value function has
plateaued, indicating that the agent has mastered the current difficulty level.

For all experiments we set the learning rate for the ϕ network to be 5×10−4 and the number of steps K to be 5. We also
set the ϵbudget to be 1, which under the KL divergence captures a wide range of possible transition kernel perturbations.
We evaluate each policy after training for 1 million steps for 100 episodes, and report the mean and the standard error
for a 95% confidence interval. All experiments were conducted on an RTX 4080 Laptop GPU with 4 i9-13900HX
CPUs.

Figure 2: PPO Robustness under observation, action and environmental perturbations.

5.1 Results

DR-SPCRL consistently achieves higher robustness-performance trade-offs. Across Figures 2-4, DR-SPCRL
maintains higher episodic returns under strong perturbations while retaining competitive nominal performance. For PPO
under environmental perturbations (Figure 2, bottom row), DR-SPCRL achieves an episodic return of approximately
2000 at the maximum perturbation, outperforming Fixed Budget (∼1000) and Vanilla PPO (near-zero). SAC results
(Figure 3, right) show DR-SPCRL at an episodic return of ∼2500 versus Linear Schedule (∼1500) and Fixed Budget
(∼2000), while DDPG exhibits similar improvements (Figure 4). This superior performance arises from DR-SPCRL’s
dual-variable guided curriculum, which adapts the robustness budget ϵ according to the agent’s learning progress. By
starting with small ϵ, the agent establishes a strong nominal policy, and as the dual variable β∗ signals mastery, ϵ
gradually increases, systematically exposing the agent to higher uncertainty. This progressive exposure prevents the

7



Figure 3: SAC Robustness under observation, action and environmental perturbations.

collapse under perturbation seen in Fixed Budget approaches and avoids the instability of heuristic schedules, enabling
DR-SPCRL to consistently balance robustness and performance across algorithms and perturbation types. In total,
DR-SPCRL is able to outperform fixed or heuristic based CRL algorithms by 11.8% across action, observation, and
environment perturbations. It also improves the robustness over the nominal RL algorithm by 1.9×.

Fixed robustness budgets force an unavoidable compromise between nominal and robust performance. Fixed-ϵ
approaches demonstrate a clear trade-off between nominal performance and robustness. In PPO observation noise
experiments (Figure 2), Fixed Budget (ϵ = 1.0) maintains higher returns under strong noise but sacrifices nominal
performance, achieving only ∼3000 at zero noise compared to Vanilla PPO’s ∼3500. Conversely, Vanilla PPO (ϵ = 0)
preserves nominal performance but collapses under high noise, dropping to ∼500 at maximum perturbation while
Fixed Budget maintains ∼1800. DDPG shows a similar pattern (Figure 4): Fixed Budget preserves an episodic return
of ∼1000 under maximum action perturbations but only ∼2500 under small perturbations versus Vanilla’s ∼3500.
This occurs because a static robustness objective cannot adjust to the agent’s evolving capabilities: small ϵ ignores
robustness, while large ϵ depresses nominal returns, creating an unavoidable performance-robustness compromise that
adaptive curricula like DR-SPCRL can resolve.

Heuristic curriculum methods provide inconsistent robustness benefits across environments Heuristic ap-
proaches, including Linear Schedule, SPACE, and ACCEL, yield performance that is highly dependent on the algorithm
and perturbation type. For SAC environmental perturbations (Figure 3), Linear Schedule and SPACE degrade rapidly
beyond a noise level of 0.3, dropping to∼1500 and∼1000, respectively, while DR-SPCRL maintains an episodic return
of ∼2500. In DDPG with action perturbations (Figure 4, top row), ACCEL collapses to near-zero by a noise level of
0.5, whereas DR-SPCRL preserves an episodic return of ∼1500. These inconsistencies arise because heuristic methods
rely on predefined timesteps or plateau detection rather than a principled measure of learning progress. They may
advance too quickly, overwhelming the agent, or too slowly, failing to develop full robustness. In contrast, DR-SPCRL
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Figure 4: DDPG Robustness under observation, action and environmental perturbations.

Figure 5: Comparison of training curves across the four continuous-control environments under different curriculum
strategies. DR-SPCRL demonstrates smoother and more stable learning dynamics compared to the non-robust baselines,
often significantly increasing the nominal reward.

leverages the dual variable β∗ to adaptively scale task difficulty based on actual agent performance, yielding consistent
robustness gains across algorithms and perturbation types.

Environmental perturbations highlight the advantage of adaptive curricula Environmental perturbations, which
alter fundamental dynamics such as mass, friction, and damping, present the greatest challenge for robustness because
standard RL training assumes consistent environment parameters, even as observations and actions vary during the
trajectory. PPO results (Figure 2) show DR-SPCRL maintaining an episodic return of ∼2000 at maximum perturbation,
compared to Fixed Budget’s ∼1000, while DDPG (Figure 4) preserves a return of ∼1500 versus Linear Schedule’s
∼800 and Fixed Budget’s ∼600. Fixed budgets either over-constrain learning or fail to sufficiently challenge the
agent, and heuristics cannot reliably adjust to non-linear, environment-specific difficulty progressions. DR-SPCRL’s
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(a) DDPG: Varying pacing parameters α (b) DDPG: Varying curriculum learning rates

(c) PPO: Varying pacing parameters α (d) PPO: Varying curriculum learning rates

(e) SAC: Varying pacing parameters α (f) SAC: Varying curriculum learning rates

Figure 6: Ablation studies evaluating DR-SPCRL’s robustness under fixed hyperparameters. Each panel shows episodic
returns under observation, action, and environmental perturbations. Left column: results with fixed pacing parameters
α. Right column: results with fixed curriculum learning rates. Across all algorithms (DDPG, PPO, SAC), DR-SPCRL
maintains high robustness and demonstrates stability despite suboptimal hyperparameter choices.

dual-variable guided curriculum automatically scales the robustness budget based on observed agent proficiency,
exposing the policy to systematically increasing dynamics changes. This capability enables effective learning under
substantial environmental variation, highlighting DR-SPCRL’s potential for sim-to-real transfer and other domains with
systematic environmental uncertainty.

5.2 Training Results

DR-SPCRL consistently improves training performance across environments and algorithms Across all tested
environments and base algorithms, DR-SPCRL variants (denoted with "-SP") demonstrate higher episodic returns and
smoother learning trajectories compared to standard SAC, PPO, and DDPG. In HalfCheetah, DRSAC-SP reaches nearly
8000 episodic return, substantially exceeding standard SAC, while in Humanoid, DRPPO-SP achieves around 5000,
roughly double standard PPO’s performance. These improvements are evident throughout training, not just at the final
evaluation, with DR-SPCRL agents avoiding the plateaus, instabilities, and sudden performance collapses frequently
observed in non-robust RL training, particularly in high-dimensional or challenging control tasks.

Adaptive curriculum and dual-variable guidance explain DR-SPCRL’s superior training behavior The key
to DR-SPCRL’s success during training is its dual-variable guided curriculum, which treats the robustness budget ϵ
as a dynamic, learnable parameter. Early in training, the agent faces small uncertainty sets, enabling it to establish
strong nominal policies without being overwhelmed. As the agent demonstrates proficiency, the dual variable β∗

automatically signals when the curriculum can safely increase ϵ, progressively introducing harder perturbations. This
ensures the policy is continually challenged but not overstressed, preventing collapse under large perturbations and
avoiding overfitting to nominal dynamics. Standard RL lacks this mechanism, optimizing only for a fixed environment
and consequently struggling with stability and robustness, which explains the smoother, higher-performing training
curves observed with DR-SPCRL.

5.3 Ablation Study

To assess the robustness of DR-SPCRL under varied conditions, we conducted ablation experiments by varying either
the pacing parameter α or the curriculum learning rate for the entire training run (Figure 6). Across DDPG, PPO, and
SAC, the results demonstrate that DR-SPCRL consistently maintains high episodic returns under observation, action,
and environmental perturbations, even with suboptimal hyperparameter choices.
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For DDPG with fixed α values (Figure 6a), all configurations sustain returns above 1500 under observation perturbations,
with minimal differences between α = 0.1 (∼1800) and α = 1.0 (∼1700). Similarly, varying the curriculum
learning rate (Figure 6b) yields comparable performance across all perturbation types. PPO exhibits similar stability:
environmental perturbation returns (Figures 6c and 6d) vary by less than 10% across different hyperparameter settings,
while SAC also shows robust performance under both fixed α and learning rates (Figures 6e and 6f).

This stability can be attributed to DR-SPCRL’s self-correcting curriculum mechanism. The dual variable β∗ dynamically
adjusts the robustness budget based on the agent’s current capability, naturally compensating for suboptimal hyperpa-
rameters and ensuring that the curriculum progresses at an appropriate rate. As a result, the algorithm maintains effective
robustness across all noise levels without requiring extensive hyperparameter tuning. Even when performance is slightly
reduced due to certain fixed values, the overall robustness and learning behavior remain largely preserved, demonstrating
DR-SPCRL’s practical applicability in real-world scenarios where exhaustive hyperparameter optimization may be
infeasible.

6 Conclusion and Future Work

In this paper, we introduce DR-SPCRL, a novel curriculum learning approach for distributionally robust reinforcement
learning. Our method applies self-paced curriculum learning by treating the ϵ-radius of the uncertainty set as the context
for each training iteration. Experimental results across three baseline RL algorithms, 5 CRL algorithms, and four
environments demonstrate that DR-SPCRL improves robustness and outperforms existing curriculum reinforcement
learning methods.

Although DR-SPCRL is designed for single-agent settings, there is growing interest in multi-agent distributionally robust
algorithms. Our framework could be extended to the multi-agent setting by employing a joint robust value function and
appropriately adapting the formulation and algorithm. Future work could also explore integrating DR-SPCRL with
model-based RL or planning methods, potentially allowing the agent to anticipate perturbations more efficiently and
further improve robustness.
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A Appendix

A.1 Algorithm Hyperparameters

Our Hyperparameters for PPO, SAC, and DDPG are taken from the default CleanRL [33] implementations for these
algorithms. These are listed in Tables 1 (PPO), 2 (SAC), and 3 (DDPG). These hyperparameters are also used for the
equivalent Distributionally Robust versions. We also list hyperparameters for the SPACE, ACCEL, and Linear Schedule
comparison curriculum learning environments in Tables 4 (SPACE), 5 (ACCEL), and 6 (Linear Schedule).

Table 1: Hyperparameters for PPO

PPO Hyperparameters
Eps Clip 0.2
Learning Rate 0.0003
Discount Factor (γ) 0.99
GAE Lambda 0.95
Hidden Dim 64
Num Steps 2048
Mini Epochs 10
Num Minibatches 32
Entropy Coef 0.0
Value Function Coef 0.5
Max Grad Norm 0.5
Normalize Advantages True
Clip Value Loss True

Table 2: Hyperparameters for SAC

SAC Hyperparameters
Buffer Size 1000000
Batch Size 256
Learning Starts 5000
Discount Factor (γ) 0.99
Tau (τ ) 0.005
Policy Learning Rate 0.0003
Q Learning Rate 0.001
Policy Frequency 2
Target Network Frequency 1
Alpha (α) 0.2
Autotune True
Hidden Dim (Actor) 256
Hidden Dim (Q-Network) 256

Table 3: Hyperparameters for DDPG

DDPG Hyperparameters
Buffer Size 1000000
Batch Size 256
Learning Starts 25000
Discount Factor (γ) 0.99
Tau (τ ) 0.005
Learning Rate 0.0003
Policy Frequency 2
Exploration Noise 0.1
Hidden Dim (Actor) 256
Hidden Dim (Q-Network) 256
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Table 4: Hyperparameters for SPACE across all algorithms

SPACE Hyperparameters PPO SAC DDPG
Eps Start 0 0 0
Eps Step 0.01 0.01 0.01
Curriculum Interval 10 100 1000
Curriculum Start 5 1000 50000
Plateau Threshold 0.1 0.1 0.1

Table 5: Hyperparameters for ACCEL across all algorithms

ACCEL Hyperparameters
Eps Buffer 50
Replay Prob 0.8
Editor Noise std 0.01
Generator Range 0.02
Curriculum Interaval 100

Table 6: Hyperparameters for Linear Schedule across all algorithms

Linear Schedule Hyperparameters PPO SAC DDPG
Eps Start 0 0 0
Eps Step 0.01 0.01 0.01
Curriculum Start 5 5 50000
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