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Abstract

In this work, we study the problem of finding robust and safe policies in Robust Con-
strained Average-Cost Markov Decision Processes (RCMDPs). A key challenge in this
setting is the lack of strong duality, which prevents the direct use of standard primal-dual
methods for constrained RL. Additional difficulties arise from the average-cost setting,
where the Robust Bellman operator is not a contraction under any norm. To address these
challenges, we propose an actor-critic algorithm for Average-Cost RCMDPs. We show that
our method achieves both ϵ-feasibility and ϵ-optimality, and we establish a sample complex-
ities of Õ

(
ϵ−4
)
and Õ

(
ϵ−6
)
with and without slackness assumption, which is comparable

to the discounted setting.

1 Introduction

Reinforcement Learning (RL) has achieved remarkable success across domains such as
robotics (Chen et al., 2023), transportation (Al-Abbasi et al., 2019), and large language
model fine-tuning (Gaur et al., 2025). However, most approaches assume that training and
deployment occur under identical conditions. In practice, real-world experiments are costly
and risky, necessitating reliance on simulators. Additionally, even the most detailed simula-
tors cannot fully capture the variability, noise, and stochasticity of real-world environments.
This mismatch, known as the sim2real gap, can lead to severe performance degradation and,
in safety-critical systems, catastrophic failures or equipment damage.

Many real-world applications also impose strict safety or resource constraints: au-
tonomous vehicles must guarantee human safety, communication networks must respect
bandwidth limits, and transportation systems must meet time constraints, and the stochas-
tic nature of RL policies makes consistently satisfying these constraints challenging. The
need for both robustness against environmental shifts and adherence to strict constraints
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motivates the Robust Constrained Markov Decision Process (RCMDP) framework, where
policies must guarantee worst-case performance under an uncertainty set of transitions while
satisfying constraints.

In the RCMDP framework, distributional robustness is modeled by defining an uncer-
tainty set of environments that captures potential distribution shifts in transition dynamics,
with the objective of optimizing the worst-case performance within this set. Constraint
satisfaction is incorporated by augmenting the reward function with additional constraint
functions that must remain below specified thresholds. Our setting adds further complexity
by focusing on the infinite-horizon average reward, rather than the discounted return. This
formulation is more suitable for capturing long-term objectives and is particularly relevant
in applications requiring persistent and consistent performance over extended time horizons.

The literature on robust and constrained MDPs is still limited, especially in the average-
reward case. Strong duality does not hold in RCMDPs (Wang et al., 2022; Ma et al.,
2025), which prevents extending sample-efficient primal-dual algorithms to the robust MDP
formulation. Thus, recent work has opted for primal-only methods. Kitamura et al. (2025)
propose an epigraph formulation for discounted reward RCMDP, but the necessity of binary
search increases the sample complexity to Õ(ϵ−6 log(ϵ−1)). Additionally, this work requires
perfect estimation of the robust value function, which may not be tractable for large state
spaces. Ma et al. (2025) and Ganguly et al. (2025) develop primal-only algorithms that
achieve sample complexities of O(ϵ−6), while also in the discounted setting.

Challenges and Contributions Two primary challenges motivated our specific solution
method. Firstly, the average reward setting’s Bellman operator does not satisfy a trivial
contraction property like we have in the discounted setting. Secondly, most works on Con-
strained MDPs utilize the Primal-Dual method and propose algorithms that alternatively
update the respective Lagrangian multipliers. However, Wang et al. (2022); Ma et al. (2025)
shows that strong duality does not hold in the robust setting, which motivates the choice
of primal-only algorithms.

We summarize our work and contributions as follows:

• We present the first formulation and analysis of the Average Cost RCMDPs, extending
beyond the discounted reward setting and addressing the major problem of the lack
of strong duality.

• We propose an actor critic algorithm that theoretically guarantees ϵ-feasibility and
optimality for different uncertainty sets (Contamination, TV Distance, Wasserstein).

• We show sample complexity guarantees of O(ϵ−4) with the slackness assumption and
O(ϵ−6) without the slackness assumption.

2 Related Work

2.1 Constrained Reward MDPs

Constrained Reward MDPs (CMDPs) have been studied extensively in the literature, both
in the discounted reward and average reward setting. The model-based approaches (Chen
et al., 2022; Agarwal et al., 2022b,a) construct estimates of the transition probabilities
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and then derive safe policies. These approaches often involve continuously solving Linear
Programs (LPs) as estimated models are updated, leading to computational inefficiency and
a need for substantial memory. Model-free algorithms (Wei et al., 2022; Bai et al., 2024;
Xu et al., 2025b) learn the optimal policy or value function directly from sampling of the
environment. This is generally more compute efficient and requires less memory. Owing
to the clear advantages and the real-world applicability of model-free algorithms, we also
focus our attention on this setting.

Constrained RL problems have been addressed using various model-free solution meth-
ods, but the most common approach has been the primal-dual method (Altman, 2021;
Paternain et al., 2022; Bai et al., 2022; Wang et al., 2022; Bai et al., 2023, 2024; Mondal
and Aggarwal, 2024; Xu et al., 2025b). Here, the constrained problem is converted into its
dual formulation, where the objective is a weighted sum of the reward and the constraints.
These weights are Lagrangian multipliers, which are updated alternatively until conver-
gence. Paternain et al. (2019) show that strong duality holds in the non-robust constrained
RL setting, and this primal-dual method attains zero duality gap. The less-studied counter-
part are the works on primal-only solutions (Dalal et al., 2018; Liu et al., 2020; Yang et al.,
2020). These works ensure that the constraints are not violated (or violation is bounded)
without the use of Lagrange multipliers. For example, CRPO (Xu et al., 2021) ensures
convergence to an optimal safe policy by only updating the reward when no constraint is
violated. They leverage a novel combinatorial bucketing approach to show the convergence
even when the objective being optimised switches every iteration. Since strong duality does
not hold in the distributionally robust setting (Wang et al., 2022; Ma et al., 2025), we look
to design a primal-only algorithm.

Method Setting Sample Complexity

(Xu et al., 2025b) Constrained, Average O(ϵ−2)

(Li et al., 2022) Robust, Discounted Õ(ϵ−2)

(Xu et al., 2025a) Robust, Average Õ(ϵ−2)

(Kitamura et al., 2025) Robust, Constrained, Discounted Õ(ϵ−6)

Ma et al. (2025) Robust, Constrained, Discounted O(ϵ−6)

Ganguly et al. (2025) (w/o Slackness) Robust, Constrained, Discounted O(ϵ−6)

Ganguly et al. (2025) (w/ Slackness) Robust, Constrained, Discounted O(ϵ−4)

Our work (w/o Slackness) Robust, Constrained, Average O(ϵ−6)

Our work (w/ Slackness) Robust, Constrained, Average O(ϵ−4)

Table 1: Comparison of sample complexities of different methods to solve Robust and
Constrained MDPs. Our work achieves state of the art sample complexity over existing
robust constrained MDP methods.

2.2 Robust RL

Dynamic programming approaches to solve model-based robust RL problems have been
explored extensively in the past (Nilim and Ghaoui, 2003; Iyengar, 2005; Wiesemann et al.,
2013; Tamar et al., 2014). More recent studies on the discounted reward setting have
focused their efforts on problems where the uncertainty set is unknown and only samples
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from the nominal distribution can be collected (Zhou et al., 2021; Panaganti and Kalathil,
2022; Wang et al., 2022, 2023a).

Most studies on robust RL have primarily considered the infinite-horizon discounted re-
ward setting, where the Bellman operator always satisfies a contraction property it inherits
from the discount factor. Since no such trivial contraction property exists in the average
reward setting, the literature on robust average reward (Wang et al., 2023c; Chen et al.,
2025) consider approaches where the results from discounted reward could be converted to
that for average reward, while in the absence of constraints. Some average-reward works ex-
plore model-free solutions through Halpern iteration (Roch et al., 2025), while others exploit
ODE methods in stochastic approximation to prove convergence (Wang et al., 2023d).

More recently, a novel semi-norm with the contraction property has been found (Xu
et al., 2025c), and a corresponding Actor-Critic approach to robust average reward uncon-
strained RL has been proposed (Xu et al., 2025a). In our work, we leverage this semi-norm
and propose a similar Actor-Critic approach to Robust Constrained Average cost RL.

2.3 Robust Constrained MDPs

The literature on robust constrained MDPs (RCMDPs) is limited because strong dual-
ity does not hold in this setting (Wang et al., 2022). Some studies (Russel et al., 2020;
Mankowitz et al., 2020; Wang et al., 2022; Zhang et al., 2024) have tried to address this
problem through primal-dual methods by quantifying and tracking the duality gap or re-
stricting to certain policy classes that satisfy strong duality. However, these works do not
provide explicit iteration and sample complexity guarantees.

More recently, Kitamura et al. (2025) propose an epigraph formulation of the discounted
primal problem and provide explicit sample complexity guarantees. Unfortunately, the
binary search employed in this solution elicits a very high sample complexity. Furthermore,
it is known that the binary search approaches fail when the robust value estimates are noisy
(Horstein, 2003).

To address the above shortcomings, Ganguly et al. (2025) propose a unique formulation
of the discounted RCMDP problem without the use of epigraphs and binary search. They
show ϵ-feasibility and optimality of their mirror-descent algorithm, offering improved iter-
ation complexity guarantees. A parallel work by Ma et al. (2025) takes inspiration from
CRPO (Xu et al. (2021)) and achieves the same sample complexity guarantees as Ganguly
et al. (2025).

We emphasize that, to the best of our knowledge, this is the first work to address the
RCMDP problem in the average reward/cost setting and provide optimal sample complexity
guarantees. Table 1 is a concise comparison of the various methods in the literature and
demonstrates the optimal performance of our algorithm.

3 Formulation

3.1 Robust Average Cost MDPs

An infinite horizon robust average cost Markov Decision Process (MDP) can be defined
by the tuple (S,A, r,P, ρ), where S is the state space, r : S × A → [0, 1] is the cost
function, P is an uncertainty set of transition kernels, and ρ : S → [0, 1] is the initial state
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distribution. At each timestep, a transition kernel P is randomly selected from P and is
used to transition the environment to the next state. We focus on the (s, a)-rectangular
uncertainty set P = ⊗s,aPa

s (Nilim and Ghaoui, 2003; Iyengar, 2005), where

Pa
s = {P ∈ ∆(S) : D(P, P ◦) ≤ R} (1)

and P ◦ is the nominal transition kernel. The goal of the policy π : S → ∆(A) is to maximize
the worst-case average cost over the set of transitions P

gπP(s) = max
κ∈⊗k≥0P

lim
T→∞

Eκ,π

[
1

T

T−1∑
t=0

rt

∣∣∣∣s0 = s

]
(2)

Wang et al. (2024) showed this objective is the same under the stationary model

gπP(s) = max
P∈P

lim
T→∞

EP,π

[
1

T

T−1∑
t=0

rt

∣∣∣∣s0 = s

]
(3)

Thus, we focus solely on the stationary case. We denote the maximizers of Eq (3) as the
worst-case transition kernels and Ωπ

g = {P ∈ P : gπP = gπP}, where

gπP = lim
T→∞

EP,π

[
1

T

T−1∑
t=0

rt

∣∣∣∣s0 = s

]
(4)

is the average cost of π with transition kernel P .
We also focus on the model-free setting, where samples can only be accessed from the

nominal transition kernel P ◦. We are interested in estimating both the robust value function
V π
PV

and the robust average cost gπPV
. The robust value function can be defined through

the robust Bellman equation in Theorem 1.

Theorem 1 (Robust Bellman Equation, Theorem 3.1 in (Wang et al., 2023d)) If
(g, V ) is a solution to the robust Bellman equation

V (s) =
∑
a

π(a|s)(r(s, a)− g + σPa
s
(V )), ∀s ∈ S (5)

where σPa
s
= minP∈Pa

s
is denoted as the support function, then the scalar g corresponds to

the robust average cost, i.e., g = gπP , and the worst-case transition kernel PV belongs to
the set of minimizing transition kernels, i.e., PV ∈ Ωπ

P where Ωπ
g = {P ∈ P : gπP = gπP}.

Furthermore, the function V is unique up to an additive constant, where if V is a solution
to the Bellman equation, then we have V = V π

PV
+ ce, where c ∈ R and e is the all-ones

vector in R|S|, and V π
PV

is defined as the relative value function of the policy π under the
single transition PV as follows:

V π
PV

(s) = EPV ,π

[ ∞∑
t=0

(rt − gπPV
)

∣∣∣∣s0 = s

]
(6)

Using Theorem 1, we can define σPa
s
(V ) for different uncertainty sets.
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Contamination Uncertainty Set The R-contamination uncertainty set is Pa
s = {(1 −

R)P ◦
s,a +Rq | q ∈ ∆(S)}, where R ∈ (0, 1) is the radius of the uncertainty set. The support

function of the R-contamination set can be directly computed as

σPa
s
(V ) = (1−R)P ◦

s,aV +Rmax
s

V (s) (7)

We can also use this formulation to construct the estimator of the worst case transition
effect

σ̂Pa
s
(V ) = (1−R)V (s′) +Rmax

x
V (x) (8)

where s′ is the next state using the nominal transition kernel.

Total Variation Uncertainty Set The total variation uncertainty set is Pa
s ={

1
2∥q − P ◦

s,a∥1 ≤ R | q ∈ ∆(S)
}
. We can define the support function using its dual formula-

tion

σPa
s
(V ) = min

µ≥0

(
P ◦
s,a(V − µ)−R∥V − µ∥sp

)
(9)

where ∥ · ∥sp is the span semi-norm (Iyengar, 2005).

Wasserstein Uncertainty Sets We consider the l-Wasserstein distanceWl(q, p) = infµ∈Γ(p,q) ∥d∥µ,l,
where l ∈ [1,∞), p, q ∈ ∆(S), Γ(p, q) is the distributions over S × S with marginal dis-

tributions p, q, and ∥d∥µ,l =
(
E(X,Y )∼µ

[
d(X,Y )l

]) 1
l . The Wasserstein distance uncertainty

set is then defined as Pa
s = {Wl(P

◦
s,a, q) ≤ R | q ∈ ∆(S)}. Then we can define the support

function for the Wasserstein uncertainty set (Gao and Kleywegt, 2023) as

σPa
s
= inf

λ≥0

(
−λδl + Es∼S,a∼π(s)

[
sup
y

V (y) + λd(S, y)l
])

(10)

Following Theorem 1, we can define the robust Bellman operator in Theorem 11.

Theorem 2 (Robust Bellman Operator (Wang et al., 2024)) The robust Bellman Op-
erator Tg is defined as

Tg(V )(s) =
∑
a

π(a|s)
[
r(s, a)− g + σPa

s
(V )

]
, ∀s ∈ S (11)

The main challenge with the robust Bellman operator is that it does not satisfy a contraction
under standard norms. Thus, we leverage the contraction under the semi-norm introduced in
Xu et al. (2025c) for our stochastic approximation algorithms. We also make the assumption
throughout this work that the induced Markov Chain from the policy π is irreducible and
aperiodic (Assumption 1).

Assumption 1 (Ergodicity) The Markov chain induced by every policy π ∈ Π is irre-
ducible and aperiodic for all P ∈ P, where Π = {π|π : S → ∆(A)}.
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Assumption 1 is widely used in the robust average reward reinforcement learning liter-
ature (Wang et al., 2023d,b; Sun et al., 2024; Xu et al., 2025c). This ensures that from any
state, it is possible to eventually reach any other state, and the system does not get stuck in
deterministic cycles. This guarantees the existence of a unique stationary distribution for a
given policy, which is fundamental to the average-cost setting. Under this assumption, the
average cost is independent of the starting state, so we can write the robust average cost as
gπP .

3.2 Robust Constrained Average Cost MDPs

We extend robust average cost MDPs to robust constrained average cost MDPs by including
I constraint functions ci : S × A → [0, 1] and corresponding thresholds bi ∈ R for each
i = 1, 2, · · · , I (we keep the constraint values bounded between 0 and 1 for simplicity).
Thus, the worst-case average constraint value with policy π on constraint i is

gπ,iP = max
P∈P

lim
T→∞

EP,π

[
1

T

T−1∑
t=0

ci,t

]
(12)

where ci,t is the constraint value of constraint i at time t. Additionally, let gπ,0P = gπP be the
worst case average cost. The goal of the robust constrained average cost MDP is to find a
policy that minimizes the worst-case average cost while ensuring each constraint is satisfied
under the worst-case transition kernel:

π∗ = argmin
π

gπ,0P s.t.

gπ,iP ≤ bi, i = 1, 2, · · · , I
(13)

Issues with Primal-Dual methods Many existing works approach constrained rein-
forcement learning problem via primal-dual algorithms using Lagrange multipliers. How-
ever, this approach faces two fundamental obstacles in the robust setting.

First, strong duality is not guaranteed. While (Paternain et al., 2019) established that
the duality gap is often zero for standard (non-robust) CMDPs, this result relies on Slater’s
condition to ensure a strictly feasible policy. In the robust case, however, the set of achiev-
able robust state-action occupancy measures (i.e., those under the worst-case models) is not
necessarily convex (Wang et al., 2022). This breakdown of the underlying convexity means
that Slater’s condition is no longer sufficient to guarantee a zero duality gap and allow us
to use the dual formulation.

gπ
∗

P = min
λ∈RN

+

min
π∈Π

(
gπP +

I∑
i=1

λi(g
π,i
P − bi)

)
(14)

Secondly, the formulation of the Lagrangian is difficult to solve in the robust case due to
the maximization over the transition kernels in the uncertainty set (Kitamura et al., 2025).
This motivates the need for approaches that do not rely on strong duality.

4 Proposed Algorithm: Robust Constrained Average Cost Actor Critic

We can avoid the non-convexity and intractability issues with primal dual methods that
require strong duality by focusing solely on primal methods. For our problem formulation
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we take inspiration from a recent work by Ganguly et al. (2025) and adapt it for the average
reward case,

F π
P = min

π
max

{
gπ,0P
λ

, max
i

{
gπ,iP − bi + ζ

}}
(15)

where ζ is the slackness term. Here, the intuition is to focus on the largest constraint
violation and optimize for it in each update. If no constraints are violated (gπ,iP −bi ≤ 0,∀i ∈
[1, . . . I]), then we optimize for the cost function gπ,0P . Here, λ is introduced to regulate
the trade-off between optimizing the primary cost and mitigating constraint violations. A
sufficiently large λ ensures that constraint violations cannot be ignored, while feasibility
shifts the focus back to minimizing the cost objective.

It is worth noting that our work is not a direct extension of Ganguly et al. (2025) to
the average cost setting, as their approach relies solely on mirror descent. Our choice of an
actor-critic (AC) framework is necessitated by a core challenge in the average-cost setting:
the robust Bellman operator is not a contraction under standard norms. Consequently,
standard gradient-based methods like Online Mirror Descent are not directly applicable, as
the iterative processes needed to estimate their required Q-functions would diverge. Our AC
approach resolves this directly: the critic uses a specialized algorithm that converges under
a specific semi-norm (Xu et al. (2025c)), providing the stable Q-function estimates the actor
requires for a provably convergent update. Furthermore, although we draw inspiration from
Xu et al. (2025a) and Sun et al. (2024), we cleverly utilise their results on critic estimation
sample complexity and robust performance difference (respectively) for the constrained
setting, which they did not tackle.

Instead of solving a convex optimization problem in the dual formulation, we look at
Eq. (15) and perform gradient descent in the direction of ∇F . However, F is a function
of non linear robust average costs calculated by taking the maximum over all transition
kernels in the uncertainty set for each constraint / objective. Thus, we cannot directly
take the gradient, as this objective is not differentiable everywhere. To circumvent this,
we can employ subgradient methods, which have been heavily used in non-differentiable
optimization.

Definition 3 (Definition 3.1 in (Sun et al., 2024)) For any function f : X ⊆ RN →
R, the Fréchet sub-gradient u ∈ RN is a vector that satisfies

lim
δ→0

inf
δ ̸=0

f(x)− f(x)− ⟨u, δ⟩
∥δ∥

≥ 0 (16)

When f is differentiable, the subgradient of f is the same as the gradient. Leveraging
subgradient methods, we can find the subgradient for the robust average cost MDP.

Lemma 4 (Lemma 3.2 in (Sun et al., 2024)) Let dπP denote the stationary distribu-
tion of the state under the worst-case transition kernel of policy π. Denote the robust
Q-function as under policy π as

8
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Qπ(s, a) = max
κ∈⊗t≥0P

E

[ ∞∑
t=0

(
r(st, at)− gπP

) ∣∣∣
s0 = s, a0 = a, π

]
.

(17)

Then let ∇gπP be the subgradient of gπP , we have

∇gπP(s, a) = dπPQ
π
P(s, a) (18)

Theorem 5 (Theorem 5.3 in (Xu et al., 2025a)) Let the robust Q-function under pol-
icy π be defined by Eq. (17), then Qπ satisfies the robust Bellman equation

Qπ(s, a) = r(s, a)− gπP + σPa
s
(V π) (19)

where V π =
∑

a π(a|s)Qπ(s, a) is the robust relative value function, and gπP is the robust
average cost.

Before proving convergence, we need to show that solving our formulation in Eq. (15) is
equivalent to solving for the original robust constrained MDP problem (Eq. (13)). This
fundamental result is shown in Lemma 6. In Lemma 6, we have two cases: with and
without the slackness assumption (Assumption 2).

Assumption 2 (Slackness Assumption) We assume that maxi∈[1,I] g
π∗,i
P − bi ≤ −ζ, for

some ζ > 0.

Assumption 2 allows us to ensure exact feasibility of the optimal policy that minimizes
F π
P instead of ϵ-feasibility. Additionally, as shown in the proof of Lemma 6, it allows us to

decouple λ from ϵ, which improves the sample complexity.

Lemma 6 If π̂∗ is the optimal policy of Eq. (15), then π̂∗ is an ϵ
2 -feasible policy and

ϵ
2 -optimal to the optimal policy π∗ of Eq. (13), when λ = 4/max{ϵ, ζ}.

We show that our formulation’s optimal policy cost objective is ϵ-close to the cost
objective of the policy optimized for the original RCMDP problem. Furthermore, we are
able to ensure that any constraint is violated only by ϵ at the maximum. The proof utilizes
the general properties of the objective to show ϵ-optimality and then leverages a proof by
contradiction to show that we achieve ϵ-feasibility with and without slackness. Assuming
a constraint is violated by more than ϵ is shown to contradict the premise that π̂∗ is the
optimal policy for our objective.

Next, we need a way to attain the optimal policy π̂∗ through gradient descent, which
requires the (sub)gradient of the objective F π

P .

Lemma 7 We can rewrite ∇F π
P as

∇F π
P(s, a) = d̃πPQ

π
P(s, a) = d

π,iπmax
P Q

π,iπmax
P (s, a) (20)

9
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The proofs of Lemma 2 and 3 are given in Appendix B.

We now possess the required tools and provide the proposed algorithm in Algorithm 1.

Each iteration performs a gradient-based policy update, but the core challenge lies in
estimating the gradient itself. Since the theoretical subgradient (Lemma 4) is proportional
to the robust Q function, estimating this Q function becomes the most critical task. This is
a non-trivial task because the robust Bellman operator is not a contraction under standard
norms. Our Actor-Critic framework becomes vital for this, where the critic’s role is to
produce a stable Q-function estimate.

1. In each iteration of our algorithm, we calculate estimates gπt,i
N and V πt,i

N for the worst
case average cost and worst case value function respectively by running Algorithm 2
(our critic) for N = O(ϵ−2) iterations for each of the cost and constraints.

2. Next, we compute the worst-case value function (or support function, σ̂P) over the
uncertainty set (Contamination, TV and Wasserstein) via Algorithm 3, which imple-
ments a variance-reducing Truncated MLMC estimator.

3. Finally, we apply the worst-case Bellman operator (Theorem 5) to obtain the Q-
function for each of these components.

With the Q-function for each component estimated, the actor performs the policy up-
date. It uses Lemma 7 to identify the active objective (the most violated constraint or the
cost) and selects its corresponding Q-function for the update step .

It is to be noted that since the task of policy evaluation is identical in both constrained
and unconstrained settings, we can directly employ these established, sample-efficient algo-
rithms(2, 3) for our critic. Algorithms 2 and 3 are presented in Appendix A.

Algorithm 1 Average-Cost Robust Constrained Actor Critic

1: Input: Initial policy π0; iterations T ; learning rate η
2: for t = 0, 1, . . . , T − 1 do
3: Robust evaluation: estimate gπt,i

N , V πt,i
N (s, a) using Algorithm 2 for i = 0, 1, · · · I.

4: Obtain σ̂Pa
s

(
V πt,i
N

)
using Algorithm 3 for i = 0, 1, · · · I

5: for (s, a) ∈ S ×A do

6: Q̂πt,0
P (s, a) = r(s, a)− gπt,0

N + σ̂Pa
s

(
V πt,0
N

)
7: for i ∈ {1, 2, · · · I} do
8: Q̂πt,i

P (s, a) = ci(s, a)− gπt,i
N + σ̂Pa

s

(
V πt,i
N

)
9: end for

10: end for
11: Calculate Q̂πt

P from gπt,i
N , Q̂πt,i

P , for i ∈ {0, 1, · · · I}
12: πt+1 ← argminp∈∆(A){η

〈
Q̂πt

P , p
〉
+ ∥p− πt(·|s)∥2}

13: end for
14: return π̂ = argmint=0,··· ,T−1 F

πt
P

10
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5 Theoretical Analysis

The critic’s role is to estimate the Q-function, Qπt
P . Per the analysis of Xu et al. (2025a),

Lemma 11 (Appendix C) provides a guarantee that we can obtain an ε accurate estimate
of this Q-function with Õ(ϵ−2) number of samples.

A common method to prove the convergence of policy optimization methods is to form
an average of the performance differences between the current policy and the optimal policy,

argmin
t=0,1,...,T

(
F πt
P − F π̂∗

P

)
≤ 1

T

T−1∑
t=0

(
F

πt+1

P − F π̂∗
P

)
,

which allows us to find an upper bound on the performance difference. However, the per-
formance difference lemma (Lemma 12 in Appendix C) given by Sun et al. (2024) expresses
each difference in terms of an expectation under the stationary distribution dπt

P of the cur-
rent policy. Since the stationary distribution (and hence the expectation) changes with πt at
every step, these terms do not align across iterations and our desired telescoping structure
breaks down.

To overcome this difficulty, we introduce a regularity assumption linking performance
gaps under the worst-case transition kernel P to those under the nominal kernel P ◦:

Assumption 3 For all policies π ∈ Π)

gπP − gπ̂
∗

P ≤ CEs∼dπ
P◦ [⟨Q

π
P (s, ·), π(·|s)− π̂∗(·|s)⟩] (21)

This assumption extends the robust performance difference lemma by relating the worst-
case performance gap to the nominal kernel’s stationary distribution. Intuitively, it asserts
that the degradation in performance under the worst-case model cannot exceed that under
the nominal model by more than a constant multiplicative factor C. A related assumption
is common in the discounted robust MDP setting (Tamar et al. (2014); Zhou et al. (2023);
Ganguly et al. (2025)), which states: γp(s′|s, a) = βp0(s

′|s, a) for some β ∈ (0, 1). We
notice that if γ = 1, the assumption does not hold anymore (a trivial counterexample is
when s′ = s). Thus, we cannot leverage an assumption of the same form for our average
cost setting. However, it is to be noted that our assumption is not completely arbitrary
and is grounded in the assumption made by the discounted RMDP literature. A detailed
equivalence relation is provided in Appendix C. We now have the required tools to state
and prove our main theorem on convergence:

Theorem 8 Using a stepsize of η = O(ϵ), Algorithm 1 returns a policy π̂ that is both
ϵ-feasible and ϵ-optimal after T = Õ(ϵ−2λ2) iterations.

We know from Xu et al. (2025a) that the critic requires Õ(ϵ−2) samples. Therefore, if
we assume the slackness condition, we obtain an iteration complexity of T = O(ϵ−2ζ−2)
and a corresponding sample complexity of O(ϵ−4ζ−2). If we do not assume slackness, we
obtain T = O(ϵ−4) and a sample complexity of O(ϵ−6).

Theorem 8 establishes that Algorithm 1 converges to a policy that is simultaneously
ϵ-optimal and ϵ-feasible with sample complexities comparable to existing discounted reward
settings.

The convergence analysis is composed of three key steps:

11
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• The proof begins by invoking our critical Assumption 3. This step allows us to shift
the analysis to the more tractable non-robust setting where the stationary distribution
is fixed with respect to a single optimal policy. We then utilize the standard result
of the non-robust performance difference lemma, yielding an expectation over the
Q-function.

• We decompose the inner product into two parts corresponding to the policy change
in one step and the remaining gap to the optimal policy. We then leverage the three-
point lemma of Bregman Divergence and Holder’s inequality to obtain a telescoping
sum of the form

· · · ≤ 1

η
(∥π̂∗(·|s)− πt(·|s)∥2 − ∥π̂∗(·|s)− πt+1(·|s)∥2)

+ error-terms

• Finally, we sum the inequality over all iterations t = 0, · · · , T − 1. The telescoping
terms cancel out, leaving a bound on the average performance gap that depends on
the initial policy distance, the step size η, and the critic estimation error ε. Using the
fact that the minimum of a distribution is at most the average, we obtain the above
mentioned iteration complexities.

6 Conclusion

In this work, we present an actor critic algorithm to solve the robust constrained average cost
MDP problem. We show that our algorithm outputs an ϵ-feasible and ϵ-optimal policy with
a sample complexity of O(ϵ−4) when using the slackness assumption and O(ϵ−6) when not
using the slackness assumption. Not only are we the first algorithm to tackle this specific
setting, but we also obtain equal sample complexity guarantees with existing discounted
RCMDP algorithms.

Weakening the assumptions in this work while preserving the same sample complex-
ity is an important avenue for future research. Furthermore, a gap persists between the
sample complexity results for robust constrained and robust unconstrained settings in both
average- and discounted-reward cases. Closing this gap, either through the development of
improved algorithms and refined analyses or by establishing tighter lower bounds on sample
complexity, constitutes another significant direction for future work.
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Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes.
Mathematics of Operations Research, 38(1):153–183, 2013.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe rein-
forcement learning with convergence guarantee. In Proceedings of the 38th International
Conference on Machine Learning, pages 11480–11491, 2021.

Yang Xu, Swetha Ganesh, and Vaneet Aggarwal. Efficient q-learning and actor-critic meth-
ods for robust average reward reinforcement learning. arXiv preprint arXiv:2506.07040,
2025a.

Yang Xu, Swetha Ganesh, Washim Uddin Mondal, Qinbo Bai, and Vaneet Aggarwal. Global
convergence for average reward constrained mdps with primal-dual actor critic algorithm.
arXiv preprint arXiv:2505.15138, 2025b.

Yang Xu, Washim Uddin Mondal, and Vaneet Aggarwal. Finite-sample analysis of
policy evaluation for robust average reward reinforcement learning. arXiv preprint
arXiv:2502.16816, 2025c.

15



Satheesh, Sathish, Ganesh, Powell, and Aggarwal

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-
based constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

Zhengfei Zhang, Kishan Panaganti, Laixi Shi, Yanan Sui, Adam Wierman, and Yisong
Yue. Distributionally robust constrained reinforcement learning under strong duality. In
Reinforcement Learning Conference, 2024.

Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, PR Kumar, and Chao Tian. Natural
actor-critic for robust reinforcement learning with function approximation. Advances in
neural information processing systems, 36:97–133, 2023.

Zhengqing Zhou, Zhengyuan Zhou, Qinxun Bai, Linhai Qiu, Jose Blanchet, and Peter
Glynn. Finite-sample regret bound for distributionally robust offline tabular reinforce-
ment learning. In International Conference on Artificial Intelligence and Statistics, pages
3331–3339. PMLR, 2021.

16



Appendix A. Missing Algorithms from Section 4

Algorithm 2 Robust average cost TD (Algorithm 2 in Xu et al. (2025c))

1: Input: Policy π, Initial values V0, g0 = 0, Stepsizes ηt, βt, Max level Nmax, Anchor
state s0 ∈ S

2: for t = 0, 1, . . . , T − 1 do
3: for each (s, a) ∈ S ×A do
4: if Contamination then
5: Sample σ̂Ps,a(Vt) according to Eq. 8
6: else if TV or Wasserstein then
7: Sample σ̂Ps,a(Vt) according to Algorithm 3
8: end if
9: end for

10: T̂g0(Vt)(s)←
∑

a π(a|s)
[
r(s, a)− g0 + σ̂Ps,a(Vt)

]
, ∀s ∈ S

11: Vt+1(s)← Vt(s) + ηt

(
T̂g0(Vt)(s)− Vt(s)

)
, ∀s ∈ S

12: Vt+1(s)← Vt+1(s)− Vt+1(s0), ∀s ∈ S
13: end for
14: for t = 0, 1, . . . , T − 1 do
15: for each (s, a) ∈ S ×A do
16: if Contamination then
17: Sample σ̂Ps,a(Vt) according to Eq. 8
18: else if TV or Wasserstein then
19: Sample σ̂Ps,a(Vt) according to Algorithm 3
20: end if
21: end for
22: δt(s)←

∑
a π(a|s)

[
r(s, a) + σ̂Ps,a(VT )

]
− VT (s), ∀s ∈ S

23: δ̄t ← 1
S

∑
s δt(s)

24: gt+1 ← gt + βt(δ̄t − gt)
25: end for
26: return VT , gT
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Algorithm 3 Truncated MLMC Estimator, Algorithm 1 in Xu et al. (2025c)

1: Input: s ∈ S, a ∈ A, Max level Nmax, Value function V
2: Sample N ∼ Geom(0.5)
3: N ′ ← min{N,Nmax}
4: Collect 2N

′+1 i.i.d. samples of {s′i}2
N′+1

i=1 with s′i ∼ P̃ a
s for each i

5: P̂ a,E
s,N ′+1 ←

1
2N′
∑2N

′

i=1 1{s′2i}

6: P̂ a,O
s,N ′+1 ←

1
2N′
∑2N

′

i=1 1{s′2i−1}

7: P̂ a
s,N ′+1 ←

1
2N′+1

∑2N
′+1

i=1 1{s′i}
8: P̂ a

s,1 ← 1{s′1}
9: if TV then

10: Obtain σP̂a
s,1
(V ), σP̂a

s,N′+1

(V ), σ
P̂a,E

s,N′+1

(V ), σ
P̂a,O

s,N′+1

(V ) from Eq. 9

11: else if Wasserstein then
12: Obtain σP̂a

s,1
(V ), σP̂a

s,N′+1

(V ), σ
P̂a,E

s,N′+1

(V ), σ
P̂a,O

s,N′+1

(V ) from Eq. 10

13: end if

14: ∆N ′(V )← σP̂a
s,N′+1

(V )− 1
2

[
σ
P̂a,E

s,N′+1

(V ) + σ
P̂a,O

s,N′+1

(V )

]
15: σ̂Pa

s
(V )← σP̂a

s,1
(V ) +

∆N′ (V )
P(N ′=n) , where p′(n) = P(N ′ = n)

16: return σ̂Pa
s
(V )
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Appendix B. Missing Proofs for Section 4

Lemma 9 (Proof of Lemma 6) Proof Let π̂∗ be the policy that minimizes our smoothed
objective F . Then we have that the optimality difference between π∗ (true optimal policy of
Eq 13) and π̂∗ is

gπ̂
∗,0

P
λ
−

gπ
∗,0

P
λ

(a)

≤ max
i

Gπ̂∗
P −max

i
Gπ∗

P (22)

(b)

≤ 0 (23)

where (a) is from the definition of max and because π∗ is a feasible policy, and (b) is by the
optimality of π̂∗. Then to prove feasibility, we have two cases.

Case 1 (No slackness): By contradiction, assume optimal policy π̂∗ violates the con-
straints by more than ϵ

2 , where we set the slackness coefficient ζ to 0:

max
i∈{1,···I}

{
gπ̂

∗,i
P − bi + ζ

}
= max

i∈{1,···I}

{
gπ̂

∗,i
P − bi

}
>

ϵ

2
(24)

We set the hyperparameter λ = 4
ϵ . The maximum average cost for the objective, gπ̂

∗,i
P , is

bounded by 1 because the cost function is bounded by 1. Similar logic holds for π∗. Therefore,
the objective cost term satisfies:

gπ̂
∗,0

P
λ
≤ 1

λ
=

ϵ

4
,

gπ
∗,0

P
λ
≤ 1

λ
=

ϵ

4
(25)

Combining (24) and (25) yields

max

{
gπ̂

∗,0
P
λ

,max
i

{
gπ̂

∗,i
P − bi

}}
= max

i
Gπ̂∗

P >
ϵ

2
. (26)

Thus, we have

max
i

Gπ∗
P = max

{
gπ

∗,0
P
λ

,max
i

{
gπ

∗,i
P − bi

}}
≤ ϵ

4
<

ϵ

2
= max

i
Gπ̂∗

P (27)

which is a contradiction as by definition, Gπ̂∗
P ≤ Gπ∗

P . Therefore, the maximum violation is
at most ϵ/2 with λ = 4

ϵ .

Case 2 (With Slackness): Assumption 2 gives us a way to prove exact feasibility of π̂∗

by choosing λ = 4
ζ , assuming that ζ > ϵ. We again assume by contradiction that the optimal

policy π̂∗ violates the constraints by more than ϵ
2 :

max
i∈{1,···I}

{
gπ̂

∗,i
P − bi + ζ

}
>

ζ

2
(28)

Then following the same logic in Case 1, we have
gπ̂

∗,0
P
λ ≤ ζ

4 and

max

{
gπ̂

∗,0
P
λ

,max
i

{
gπ̂

∗,i
P − bi + ζ

}}
= max

i
Gπ̂∗

P >
ζ

2
. (29)
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This yields

max
i

Gπ∗
P = max

{
gπ

∗,0
P
λ

,max
i

{
gπ

∗,i
P − bi

}}
≤ ζ

4
<

ζ

2
= max

i
Gπ̂∗

P (30)

which again is a contradiction. Thus, the original assumption is false and

max
i∈{1,···I}

{
gπ̂

∗,i
P − bi + ζ

}
≤ ζ

2
=⇒ max

i∈{1,···I}

{
gπ̂

∗,i
P − bi

}
≤ −ζ

2
≤ 0 (31)

Thus, with the slackness assumption, we obtain exact feasibility.

Lemma 10 (Restatement of Lemma 7) We can rewrite ∇F π
P as

∇F π
P(s, a) = d̃πPQ

π
P(s, a) = d

π,iπmax
P Q

π,iπmax
P (s, a) (32)

Proof We first look at the inner product between the subgradient of F π
P and π

⟨∇F π
P , π⟩

(a)
=

I∑
i=0

wπ
i

〈
∇Gπ,j

P , π
〉

(33)

(b)
=

I∑
j=0

wπ
j

∑
s

dπ,jP (s)
∑
a

Qπ,j
P (s, a)π(a | s) (34)

where (a) uses the definition of the derivative of the objective, and in (b), we use the defini-
tion of the subgradient from Lemma 4. Fixing a state s and looking only at the coefficient
of π(a|s) yields

I∑
i=0

wπ
i d

π,i
P (s)Qπ,i

P (s, a) =
I∑

i=0

wπ
i d

π,i
P (s)Qπ,i

P (s, a) (35)

=

I∑
i=0

d
π,iπmax
P 1i=iπmax

Q
π,iπmax
P (s, a) (36)

= d
π,iπmax
P Q

π,iπmax
P (s, a) (37)

which is the desired result.

Appendix C. Missing Lemmas and Proofs for Section 5

Lemma 11 (Xu et al. (2025a)) We have that the expected estimation error between the
true smoothed Q-function and our estimate is bounded by ε with a sample complexity of
O(ϵ−2).

E
[∥∥∥Qπt

P (s, ·)− Q̂πt
P (s, ·)

∥∥∥
∞

]
≤ ε (38)
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Next, we define the performance difference lemma for robust average cost MDPs from
(Sun et al., 2024).

Lemma 12 (Lemma 4.1 in (Sun et al., 2024)) For any two policies π, π′, we have that

gπP − gπ
′

P ≥ E
s∼dπ

′
P

[〈
Qπ

P(s, ·), π(·|s)− π′(·|s)
〉]

(39)

where dπ
′

P denotes the stationary distribution under the worst-case transition kernel of policy
π′.

C.1 A detailed motivation of Assumption 3

We draw a direct connection between our Assumption 3 and the corresponding assumption
commonly employed in the discounted robust MDP literature.

• In the discounted setting, Lemma B.3 of Ganguly et al. (2025) is central to the
convergence analysis and follows as a direct consequence of the assumption γp(s′ |
s, a) ≤ βp0(s

′ | s, a) for all s′, s, a, where β ∈ (0, 1). This multiplicative dominance
condition induces a contraction in the state-transition dynamics, which leads to the
bound

Φ(π)− Φ(π∗) ≤ 1

1− β
Es∼dπ

∗
P◦

[〈
Qπt

P (s, ·), πt(· | s)− π∗(· | s)
〉]
, (40)

where Φ denotes their discounted objective function. The factor 1
1−β quantifies the

effective discount-induced dependence between states.

• In contrast, in the average reward robust MDP setting there is no discount factor,
making the bound in (40) inapplicable since no contraction holds. To address this,
we introduce Assumption 3, which serves as an analogous regularity condition:

gπP − gπ̂
∗

P ≤ C Es∼dπ
P◦

[〈
Qπ

P (s, ·), π(· | s)− π̂∗(· | s)
〉]
. (41)

Here, the constant C ≥ 1 replaces the role of the geometric factor 1
1−β from the dis-

counted setting. Intuitively, C captures the extent to which the stationary distribution
under the worst-case transition kernel P can differ from that under the nominal kernel
P ◦, thus providing a measure of distributional regularity in the absence of discounting.

This substitution generalizes the discounted assumption to the average-reward regime
by replacing the explicit contraction (through β) with a bounded performance coupling
constant C, ensuring that the worst-case performance degradation remains controlled
relative to the nominal dynamics.

Lemma 13 (Restatement of Theorem 4) Using a stepsize of η = O(ϵ), Algorithm 1

returns a policy π̂ that is both ϵ-feasible and ϵ-optimal after T = 18C2Q2
max∆

ϵ2
λ2 iterations.
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Proof
By the non-robust performance difference lemma between the optimal policy and the

current policy, we have

F πt
P − F π̂∗

P = gπt,i
P − gπ̂

∗,i
P (42)

≤ gπt,i
Pπt
− gπ̂

∗,i
Pπt

(43)

(a)
= Es∼dπ̂

∗
P◦

[〈
Qπt

P (s, ·), πt(·|s)− π̂∗(·|s)
〉]

(44)

= Es∼dπ̂
∗

P◦

[〈
Qπt

P (s, ·), πt(·|s)− πt+1(·|s)
〉]

+ Es∼dπ̂
∗

P◦

[〈
Qπt

P (s, ·), πt+1(·|s)− π̂∗(·|s)
〉]

(45)

where (a) uses Assumption 3. From the three point lemma of Bregman Divergence

F πt
P − F π̂∗

P ≤ Es∼dπ̂
∗

P◦

[ 〈
Qπt

P (s, ·), πt(·|s)− πt+1(·|s)
〉
− 1

η∥πt+1(·|s)− πt(·|s)∥2

+ 1
η∥π̂

∗(·|s)− πt(·|s)∥2 − 1
η∥π̂

∗(·|s)− πt+1(·|s)∥2 + 2ε
] (46)

From Holder’s inequality, we have

⟨Qπt
P (s, ·), πt(·|s)− πt+1(·|s)⟩ − 1

η∥πt+1(·|s)− πt(·|s)∥2 ≤ ∥Qπt
P (s, ·)∥∞∥πt(·|s)− πt+1(·|s)∥1

− 1
2η∥πt+1(·|s)− πt(·|s)∥22

(47)

By adding and subtracting η
2∥Q

πt
P (s, ·)∥2∞ and using the fact that ∥π(·|s) − π′(·|s)∥1 ≥

∥π(·|s)− π′(·|s)∥2, we get

⟨Qπt
P (s, ·), πt(·|s)− πt+1(·|s)⟩ − 1

η∥πt+1(·|s)− πt(·|s)∥2 ≤
−1
2η

(η∥Qπt
P (s, ·)∥∞ − ∥πt+1(·|s)− πt(·|s)∥)2

+
η

2
∥Qπt

P (s, ·)∥2∞

≤ η

2
∥Qπt

P (s, ·)∥2∞
(48)

Now summing equation 46 over t and taking the average, we have∑
t

(F πt
P − F π̂∗

P ) ≤
T−1∑
t=0

(
Es∼dπ̂

∗
P◦

η

2
∥Qπt

P (s, ·)∥2∞ +
1

η
Es∼dπ̂

∗
P◦

[
∥π̂∗(·|s)− πt(·|s)∥2 − ∥π̂∗(·|s)− πt+1(·|s)∥2

]
+ 2ε

)
(49)

≤ CTηQ2
max

2
+

C

η
Es∼dπ̂

∗
P◦
∥π̂∗(·|s)− π0(·|s)∥2 + 2CTε (50)

where C is the distribution mismatch coefficient. Let π̂ be the output of our algorithm
where π̂ = argmint=0,··· ,T−1 F

πt
P . Then we have

F π̂
P − F π̂∗

P ≤
1

T

∑
t

(F πt
P − F π̂∗

P ) (51)

≤ CηQ2
max

2
+

C

Tη
Es∼dπ̂

∗
P◦
∥π̂∗(·|s)− π0(·|s)∥2 + 2Cε ≤ ϵ

2
(52)

22



Primal-Only Actor Critic Algorithm for Robust Constrained Average Cost MDPs

First, we note that ε can be made arbitrarily small. From Xu et al. (2025a) and running
the critic estimate (Algorithm 2) with O(ϵ−2) samples, we can obtain ε = O(ϵ).

Solving for T , by equating each of the three terms to ϵ/6, yields T = 18C2Q2
max∆

ϵ2
using

a step size η = ϵ
2CQ2

max
, where ∆ = ∥π̂∗(·|s)− π0(·|s)∥2.

However, to achieve both ϵ-optimality and ϵ-feasibility, we must run the algorithm until
gπ̂,0P − gπ̂

∗,0
P ≤ ϵ. Now, we have

gπ̂,0P
λ
−

gπ̂
∗,0

P
λ
≤ F π̂

P − F π̂∗
P ≤

ϵ

λ
(53)

Thus, number of iterations needed is 18C2Q2
max∆

ϵ2
λ2.

Appendix D. Numerical Experiments

Figure 1: Performance of the Robust Constrained Average-Cost Actor-Critic algorithm
under the Contamination uncertainty set.

Figure 2: Performance of the Robust Constrained Average-Cost Actor-Critic algorithm
under the Total Variation (TV) uncertainty set.
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Figure 3: Performance of the Robust Constrained Average-Cost Actor-Critic algorithm
under the Wasserstein uncertainty set.

Figure 4: Performance of the Robust Constrained Average-Cost Actor-Critic algorithm
under the TV uncertainty set with larger uncertainty set radii.

Figure 5: Performance of the Robust Constrained Average-Cost Actor-Critic algorithm
under the Wasserstein uncertainty set with larger uncertainty set radii.
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